

National Aeronautics and Space Administration

NASA Space Technology Update

NAC TI&E Meeting

Clayton Turner

Associate Administrator (Acting), NASA Space Technology Mission Directorate

September 5, 2024

NASA's Space Technology Mission Directorate (STMD) www.nasa.gov

NATIONAL TECH BASE FOR CIVIL SPACE

Space Tech leads the development, demonstration, and infusion of transformational space technologies that solve critical stakeholder needs

ADVANCE US space technology innovation and competitiveness in a global context **ENCOURAGE** technology driven economic growth with an emphasis on the expanding space economy *INSPIRE* and develop a diverse and powerful US aerospace technology community

Recent Tech Highlights

Deep Space Optical Communications

Intuitive Machines 1 CLPS Payloads

Cryogenic Fluid Management Demo

Space Nuclear Technologies

Starling Swarm Demo

Cooperative Robotic Scouts

Solar Sail Deployment

SPACE TECHNOLOGY PORTFOLIO

As currently organized:

EARLY STAGE INNOVATION AND PARTNERSHIPS

Early Stage Innovation

- Space Tech Research Grants
- Center Innovation Fund
- Early Career Initiative
- Prizes, Challenges & Crowdsourcing
- NASA Innovation Advanced Concepts

101

Technology Transfer

SBIR/STTR PROGRAMS

- Small Business Innovation Research
- Small Business
 Technology Transfer

TECHNOLOGY MATURATION

Game Changing
 Development

Technology Readiness Level

 Lunar Surface Innovation Initiative

TECHNOLOGY DEMONSTRATION

Technology Demonstration Missions

HIGH

- Small Spacecraft Technology
- Flight Opportunities

Tech Base Functional Domains

	GO Space Transportation	*	Advanced P Nuclear Pro	Propulsion opulsion	*	Flight Vehicle Systems (including Ascent Systems) Cryogenic Fluid Management		
	LAND Space to Surface Operations	* *	Deceleratio Guidance &	on Systems a Nav Systems	* *	Landing Systems & Environments Entry Modeling & Instrumentation		
	LIVE Surface Infrastructure/ Exploration	* * *	Surface Pov In Situ Resc Surface Stre	wer ource Utilization uctures & Construction	* * *	Dust Mitigation & EnvironmentsSurfaceSurface Mobility & TransportationSustainabilitySurface Habitation Systems& Logistics		
	EXPAND In-Space Infrastructure/ Discovery	* *	Observation In-Space Su	n Systems Istainability	* * *	Communications, Positioning, Navigation, & Timing In-Space Servicing Assembly & Manufacturing Small Spacecraft & Distributed Systems		
	ENABLE Foundational Capabilities	*	Avionics & S Robotics &	Sensors Autonomy	* *	Advanced Materials, Structures & Manufacturing Advanced Power & Thermal		
	CATALYSTS Innovative Mechanisms			NIAC/CIF/ECISTRG	•	PCC • SBIR/STTR • TP/ACO Tech Transfer • Flight Opportunities • Inclusive Innovation		

STMD Restructuring Plan

- STMD is going through a transformation to become more agile and effective by re-organizing from a TRL-based structure to a capability-focused management approach.
- The newly **defined Domains** will have the responsibility for **maturing space capabilities across the full technology readiness spectrum from initial concept to mission application.**
- Organizing the STMD portfolio into functional Domains rather than by developmental maturity will enable:
 - Better prioritization of development efforts to address common stakeholder needs
 - Avoid programmatic scope expansion beyond assigned TRL range
 - Efficiently transition technologies along the maturation scale
 - Increase accountability for performance within a capability roadmap.

STMD FY 2025 PBR Summary (SM)	FY 2024 Op Plan	FY 2025 PBR
	1,100.0	1,181.8
SBIR and STTR	217.8	241.8
Early Stage Innovation and Partnerships	116.9	140.1
Agency Technology and Innovation	-	-
Technology Transfer	21.0	23.1
Early Stage Innovation	95.9	117.0
Early Stage Innovation and Commerce	2.7	5.3
Early Career Initiative (ECI) and Center Innovations Fund (CIF)	23.6	28.4
Prizes, Challenges and Crowdsourcing	9.8	12.0
NASA Innovative Advanced Concepts (NIAC)	7.2	9.6
Space Technology Research Grants (STRG)	52.8	61.6
Technology Maturation / Game Changing Development (GCD)	252.7	340.8
Space Transportation	16.4	30.3
Entry, Descent and Landing	35.4	19.7
Sustainable Exploration	117.4	189.9
Transformative Missions and Discoveries	36.3	37.7
Industry & Commerce Innovative Opportunity, Space Tech Management and Integration	47.3	63.2
Technology Demonstration	512.6	459.1
Flight Opportunities and Small Spacecraft Technology	68.1	72.7
Technology Demonstration Missions (TDM)	327.5	386.4
On-Orbit Servicing and Manufacturing Demonstration-1 (OSAM-1)	206.9	11.0
Solar Electric Propulsion (SEP)	8.5	13.0
Cryogenic Fluid Management (CFM)	75.9	82.7
Fission Surface Power	16.0	113.8
Space Nuclear Propulsion (NTP and NEP)	117.0	110.0
MOXIE, LOFTID, DSOC, OSAM-2, LCRD, TDM Selected ACO/TP, TDM Mgt & Integration	20.2	55.9

FY 2025 Congressional Markup Status

STMD Appropriations (\$M)	FY 2024 Enacted /	FY 2025 PBR	House Proposal	Senate Proposal	
	Conference				
OSAM-1 (Restore and SPIDER)	227.0	11.0	TBD	up to \$174.5M	
Nuclear Thermal Propulsion (includes DRACO)	110.0	92.5	110.0	115.0	
SBIR/STTR**	224.8	241.8	241 8	241 8	
Other Congressional Directions	un to \$137	3/7 7	un to \$2/15	276 - 370	
Nuclear Electric Propulsion (NED)	up to 3137	547.7	up to 3245	270-570	
Space Nuclear Brepulsion Brearam Office					
Space Nuclear Propulsion Center of Excellence					
Space Nuclear Fuels Technologies (beyond DPACO)					
Lunar Dower Systems (Fission Surface Dower)					
Regional Economic Development					
Flight Opportunities					
Innovative Nanomaterials					
In-Space Additive Manufacturing (MMPACT)					
Extra-Terrestrial Resource and Manufacturing Engineering (EXTREME)					
New Tinning Point and ACO (M2M_Crosscutting/ISRII/Surface Mobility_electromagnetic tool					
additive manuf)					
Lunar Infrastructure Foundational Technologies [LIFT–1]					
Rocket Propulsion Systems (RAMPT/RAMBO/ORCA)					
Additive Manufacturina					
Intellectual Property Protections					
Orbital Debris Inspection					
CAPSTONE Mission Extension					
Space Technology Research Institute (STRI)					
Remaining STMD Programmatic Content	401.0	488.8	up to 399.8	279 - 374	
Total Space Technology	1 100 0	1 181 8	1 181 8	1 181 8	

Civil Space Shortfall Ranking

Shortfall: Identified, problem-focused technology area requiring further developments to meet future exploration, science, and other mission needs

- Documented 187 shortfalls within 20 capability areas
- Collected stakeholder feedback (1,231 responses) on the importance of each shortfall
- Processed the data to assemble an integrated, ranked civil space problem list
- Integrated list is one of several factors guiding STMD projects and investments
- The results will also inform the development of technology roadmaps
- Using lessons learned to refine the approach and schedule for future years

View the results: nasa.gov/civilspaceshortfalls

Integrated Top 30 Shortfalls Compared to Stakeholder Group Rank

Higher I	Ranking	Shortfa	lls > 1	- Lower Ranking Shortfal						
1	30	60	90	120	150	180				

Not Ranked (NR)

10

				Stakeholder Group Rank								
Integrated Rank	Average Score	Shortfall ID	Category	Academia	Small Industry	Large Industry	OGA	Other	NASA Centers	ESDMD	SMD	Other MDs
1	8.103	1618: Survive and operate through the lunar night	Thermal Management Systems	4	2	2	2	9	6	4	9	1
2	7.612	1596: High Power Energy Generation on Moon and Mars Surfaces	Power	13	1	1	40	20	4	21	NR	16
3	7.435	1554: High Performance Onboard Computing to Enable Increasingly Complex Operations	Avionics	80	28	21	27	13	3	34	1	56
4	7.383	1557: Position, Navigation, and Timing (PNT) for In-Orbit and Surface Applications	Communication and Navigation	9	11	15	29	67	10	28	NR	3
5	7.247	1545: Robotic Actuation, Subsystem Components, and System Architectures for Long-Duration and Extreme Environment Operation	Autonomous Systems and Robotics	34	27	28	63	10	40	13	9	49
6	7.208	1552: Extreme Environment Avionics	Avionics	176	49	6	38	23	54	6	9	62
7	7.196	1519: Environmental Monitoring for Habitation	Advanced Habitation Systems	20	101	72	75	61	49	17	19	13
8	7.168	709: Nuclear Electric Propulsion for Human Exploration	Propulsion: Nuclear	43	131	23	4	52	32	7	NR	7
9	7.114	1304: Robust, High-Progress-Rate, and Long-Distance Autonomous Surface Mobility	Autonomous Systems & Robotics	27	42	30	121	91	34	25	25	66
10	7.095	1520: Fire Safety for Habitation	Advanced Habitation Systems	23	24	78	12	12	12	29	55	14
11	7.052	1531: Autonomous Guidance and Navigation for Deep Space Missions	Autonomous Systems & Robotics	47	67	24	3	89	42	64	23	15
12	7.045	1591: Power Management Systems for Long Duration Lunar and Martian Missions	Power	40	12	10	52	24	68	35	NR	27
13	7.034	702: Nuclear Thermal Propulsion for Human Exploration	Propulsion: Nuclear	36	114	36	14	78	62	7	NR	11
14	7.031	1559: Deep Space Autonomous Navigation	Communication and Navigation	62	129	27	5	120	38	64	23	10
15	6.968	1527: Radiation Countermeasures (Crew and Habitat)	Advanced Habitation Systems	5	23	22	6	2	5	63	NR	6
16	6.948	1526: Radiation Monitoring and Modeling (Crew and Habitat)	Advanced Habitation Systems	6	53	41	81	1	13	27	38	35
17	6.946	879: In-space and On-surface, Long-duration Storage of Cryogenic Propellant	Cryogenic Fluid Management	21	37	3	95	22	1	59	NR	2
18	6.843	1548: Sensing for Autonomous Robotic Operations in Challenging Environmental Conditions	Autonomous Systems & Robotics	42	17	26	90	16	44	14	26	57
19	6.804	1558: High-Rate Communications Across The Lunar Surface	Communication and Navigation	25	73	29	77	162	20	5	NR	51
20	6.792	1626: Advanced Sensor Components: Imaging	Sensors and Instruments	18	75	12	45	160	22	NR	18	68
21	6.784	792: In-space and On-surface Transfer of Cryogenic Fluids	Cryogenic Fluid Management	17	29	4	51	26	2	62	NR	29
22	6.720	1569: High-Mass Mars Entry and Descent Systems	Entry Descent and Landing	152	156	48	117	5	33	16	NR	12
23	6.711	1525: Food and Nutrition for Mars and Sustained Lunar	Advanced Habitation Systems	8	32	116	41	45	30	11	NR	58
24	6.695	1571: Navigation Sensors for Precision Landing	Entry Descent and Landing	14	62	37	23	4	31	45	28	9
25	6.689	1573: Terrain Mapping Capabilities for Precision Landing and Hazard Avoidance	Entry Descent and Landing	30	31	9	12	8	11	45	28	53
26	6.662	1562: Advanced Algorithms and Computing for Precision Landing	Entry Descent and Landing	54	65	45	23	3	25	45	28	8
27	6.593	1597: Power for Non-Solar-Illuminated Small Systems	Power	85	26	5	39	125	47	93	12	20
28	6.592	1568: Entry Modeling and Simulation for EDL Missions	Entry Descent and Landing	101	115	76	60	15	50	45	5	45
29	6.584	1516: Water and Dormancy Management for Habitation	Advanced Habitation Systems	49	98	127	158	53	69	26	51	22
30	6.569	1524: Crew Medical Care for Mars and Sustained Lunar	Advanced Habitation Systems	12	64	94	1	11	21	58	NR	17

ESDMD and SMD provided ranked lists (numbers shown above) in addition to shortfall scores (used for integrated list). ESDMD and SMD did not score all shortfalls. Unscored shortfalls were also not ranked.

Upcoming Space Technology Demos on Intuitive Machines 2

Intuitive Machines Nova-C lunar lander

INTUITIVE

11

Intuitive Machines Tipping Point Micro-Nova Hopper

Nokia Tipping Point 4G/LTE Communications System

> NASA Polar Resources Ice Mining Experiment 1 (PRIME-1)

Planned for late 2024, Intuitive Machines' second mission will deliver STMD investments to the lunar South Pole

www.nasa.gov/civilspaceshortfalls