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Limits of GPS & Potential of Precision 

Inertial Navigation

• Current ways to track location are not 
optimized for military use

• GPS results in external signal 

transmission

• INS – Inertial Navigation System

• Uses both gyroscopes and 

accelerometers

• Propose an alternative method of measuring 
location:

• Optomechanical Accelerometers (OMA)

• High-sensitivity

• No outside signals emitted

[1] Satellite in orbit

[2] Military Aircraft
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Introduction to Accelerometers & 

Optomechanical Accelerometers

● Common accelerometers sensing method using 

Hooke’s Law

● Commercial accelerometers – MEMS, 

capacitive, and piezoelectric accelerometers 

● Optomechanical Accelerometers (OMA)

● Displacement - measured in mechanical 

domain

● Resonant cavity frequency shift - measured 

in the optical domain

● Measurement of acceleration found by 

detecting changes in resonant frequency of 

the oscillations

Microscope image of nanofabricated optomechanical 

inertial sensor packaged at UCLA

ADIS16475 - Precision 

Miniature MEMs IMU
Piezoelectric based 

accelerometer
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Precision Inertial Navigation: Performance Metrics
Inertial sensor 

metric

Performance

Volume/Weight full package 2.8 cm3 [chiplet is 0.034 cm3]

31.5 grams [chiplet is 0.08 grams]

Power 58 mW [1-2 W cont. operation of TEC]

Dynamic range ≈30 dB

Velocity random walk 8.2 μg/Hz1/2

Bias sensitivity 1.3 mg/Hz

Scale factor 

repeatability

optical resonance repeatability at ~0.7 ppm

Bias instability 52 μg

• Size Weight and Power (SWaP) - SWaP vs. time to achieve a 1 nautical 

mile (nmi) error in seconds, for different accelerometers and technologies

• Commercial accelerometers are shown and labeled by model and 

technology they use

• Optomechanical accelerometers presented in red are our SSTP-STP 

device modules

Above: Demonstrated metrics of the chip-scale inertial sensor

Below: Packaged inertial navigation unit with experience from JPL

20 μm 2 μm

motional 

mass

photonic 

crystal 

cavity

laser input

laser 

output
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Inertial Accelerometer: Optical & Mechanical Design

• Mechanical modes - designed for the 

oscillation-mode accelerometer
• Fundamental mode at 45.12 kHz
• Forbidden modes in grey (due to symmetry 

constraints)
• Finite-element modeling

• Simulated optical modes - Figures c-f 

represent the calculated electric field (V/m)2

of the optical mode for the fully integrated 
photonic crystal 

• c. Fundamental mode
• d. x-z view of the zoomed in z-component 

electric field (V/m)
• e. Second-order mode
• f. Third-order mode
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1. Light forces at the Nanoscale

Inertial Navigation: Fundamental Operating Architecture

2. Coupled mode and first-order perturbation theory
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Gram-scale mirror Silicon nitride 

membrane
Sub-millimeter 

mirror

AFM cantilever 

mirror

Silica micro-toroid 

cavity
50 μm micro-mirror 2 μm dwarf mirror Nano-resonator

Sub-diffraction limit

1 cm 100 nm

To learn more 

about cavity 

optomechanics:
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Inertial Navigation: Fundamental Operating Architecture

3. Optomechanical coupling
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4. First-order perturbation theory
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5. Optical spring effect

• H. A. Haus, Waves and Fields in Optoelectronics.

• S. G. Johnnson et al. Phys. Rev. E 65,066611 (2002).

• C. W. Wong et al. Appl. Phys. Lett. 84, 1242 (2004).

• M. Eichenfield et al. Optics Express 17, 20078 (2009).
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SSTP: Suborbital Flight Project 
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[3] Suborbital Balloon Flight 

Electronics System Layout

Thermal Simulations

Electronics System Components & Data Collection

Device Packaging
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