
Shielding SmallSats: Collaborative Opportunities

6 August 2024

Image Credit: NASA

Larry Thomsen NASA Langley Research Center

LaRC Shields-1, Preship for ELaNaXIX Mission, July 2018

Solar Activity Influences Dose Rate in Spacecraft:

Solar active radiation effects have predictability

- NOAA Space Weather Prediction Center (SWPC) Solar Radiation Storm Severity (S) Scales
 - magnitude flux levels above 10-MeV proton energies from 1-5, and correspond to historical occurrence rates for a 11-year solar cycle.
 - Typically 50 minor (S1), 25 moderate (S2), 10 strong (S3), 3 severe (S4), and less than 1 extreme (S5) solar particle event (SPE). SEE events have increased probability of occurrence from moderate to extreme severity.
 - S Scale numbers corresponds to magnitude flux increases from 10 particle flux units (pfu)s (S1) to 100,000 pfu (S5) for the GOES-16 10 MeV proton threshold sensor.
 - Many SPEs last several days and longer with increased flux over a short amount of time.

https://www.swpc.noaa.gov/noaa-scales-explanation

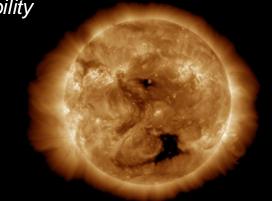
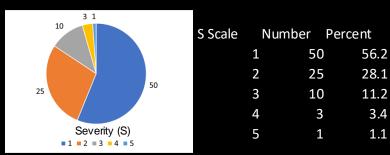
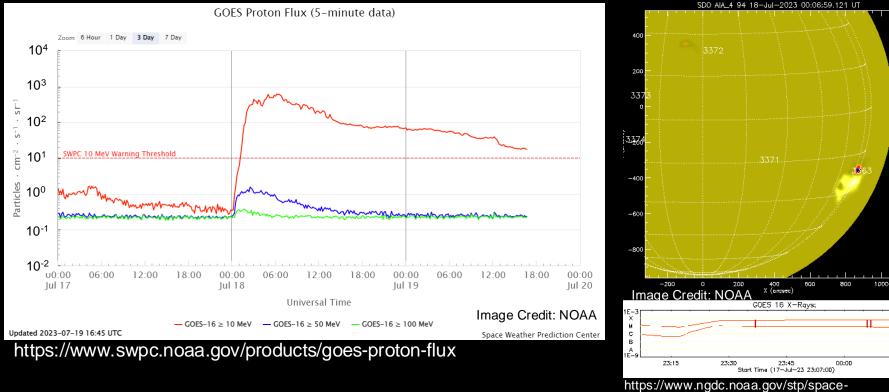
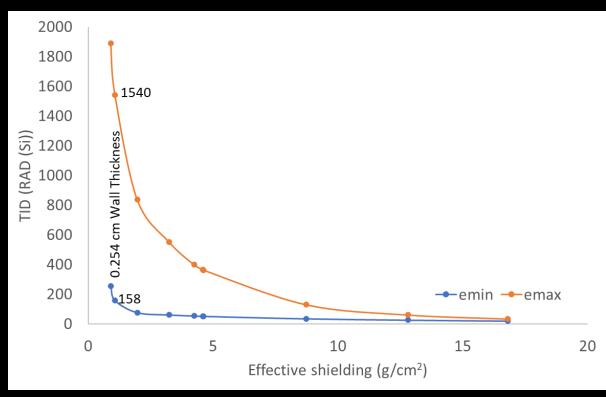



Image credit: NOAA


GOES-18 SUVI Composite 195 Angstroms 2023-05-04 13:20:07

89 Estimated Solar Particle Events during a 11-year Solar Cycle

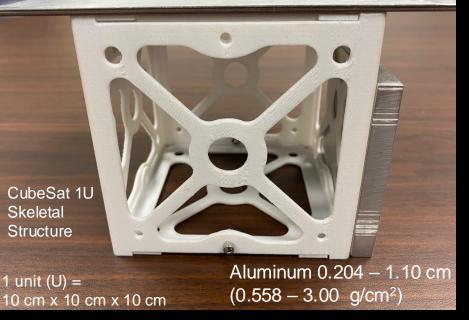

Solar Particle Event Level 2: 18-20 July 2023

Associated Solar Flare M5.7

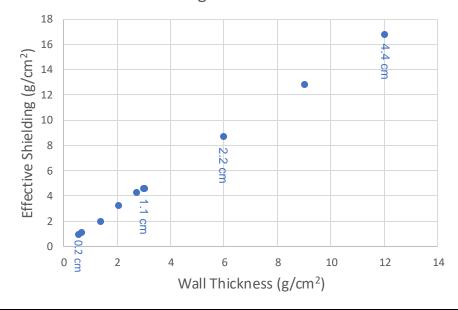
weather/interplanetary-data/solar-protonevents/SEP%20page%20code.html 00:15

TID Increases during Solar Maximum for Thin-Walled Shielding

- For thin-walled shielding, TID 10x difference solar minimum to solar maximum
- With a Radiation Design Margin (RDM) of 2 or 3, (3 kRAD or 4.5 kRAD), at limits of commercial part hardness range of 2 to 10 kRAD.


solar minimum = emin, solar maximum = emax, total ionizing dose = TID

NASA Preferred Reliability Series, 1260, "Radiation Design Margin Requirement", May 1996.

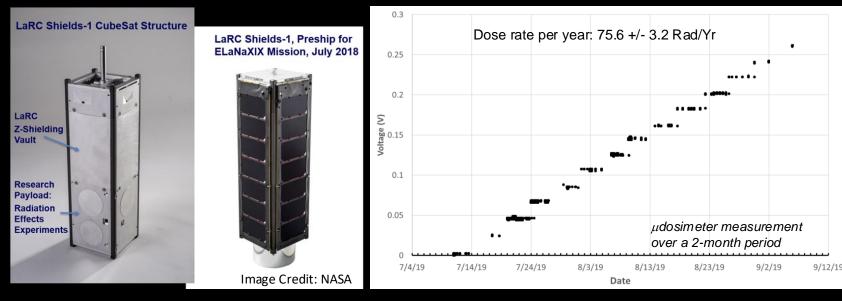

NASA Preferred Reliability Series, 1258, "Space Radiation Effects on Electronic Components in Low Earth Orbit," August 1996.

The Problem of Radiation Shielding of CubeSats is Putting Mass into the Walls of Thin Structures

LaRC Thin Atomic Number (Z)-Shields 0.204 - 0.254 cm (1.15 – 3.00 g/cm²)

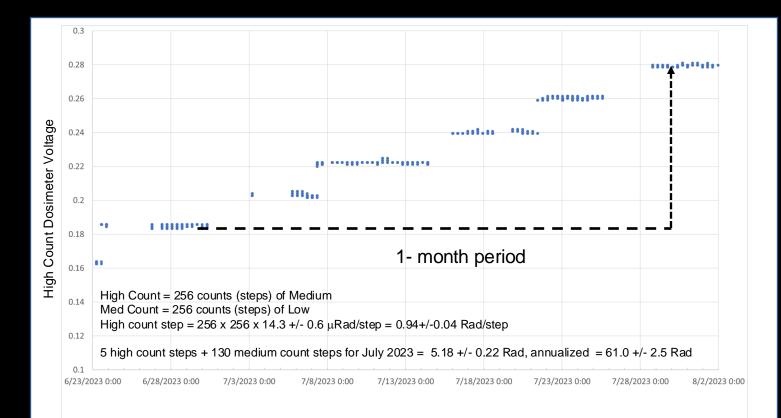
Generic 3U Al Wall-Thickness as a Function of Effective Shielding in Polar Low Earth Orbit

Thomsen, D.L., et al., Shielding Considerations for CubeSat Structures During Solar Maximum, in 37th Annual Small Satellite Conference. 2023: Logan, UT. p. 9.


Effective Shielding determined using NOVICE SIGMA, 3-D Ray Tracing Sector Analysis, Estimates with Aerospace Corporation Proton (AP)8 Solar Minimum Model for a 500-km altitude and 85° inclination orbit.

Shields-1 (Z-Shield Vault): Dose Rate during Solar Minimum

Minimum Proton Threshold is 151 MeV, high energy proton sensor


Well defined from NOVICE Ray Tracing Estimate

The Z-shielding enabled the development of adding mass to volume constrained environements

Z-Shield Vault Performance in Polar Low-Earth Orbit

Shields-1 Dose during Solar Active July 2023 Lower than 2019 Solar Minimum

Collaborative Opportunities

- Shielding offers reduction of total ionizing dose on sensitive electronics and reduced proton single event effects
- NASA Technology Transfer Portal: <u>https://technology.nasa.gov/</u>
 - Commercial and Research Licensing Available
 - Novel Radiation Shielding Material for Dramatically Extending the Orbit Life of Cubesats (LAR-TOPS-250), <u>https://technology.nasa.gov/patent/LAR-TOPS-250</u>
 - Atomic Number (Z)-Grade Radiation Shields from Fiber Metal Laminates (LAR-TOPS-201), <u>https://technology.nasa.gov/patent/LAR-TOPS-201</u>
 - Available for Government Use

Acknowledgements

- R. Bryant (LaRC)
- M. Jones
- R. Lueg
- K. Somervill
- T. Burns
- C. Rhoades
- M. Cooney
- N. Miller
- B. Seufzer
- V. Stewart

- H. Soto
- S. Thibeault
- A. Thornton
- S. Gayle
- C. Fay
- M. Banchy
- D. Keck
- J. Applin
- J. Alexa (AMA)
- S. Sankaran (AMA)

- J. Cutler (UMich)
- W. Kim (JPL)
- I. Jun (JPL)
- J. Minow (MSFC)
- B. Blake (Aerospace Corp.)
- B. Crain (Aerospace Corp.)
- A. Goff (Luna Innovations)
- S. Princiotto (Teledyne)
- M. Wrosch (Vanguard Space)
- ELaNaXIX Mission NASA CubeSat Launch Initiative
- NASA Wallops Flight Facility CubeSat Ground Operations