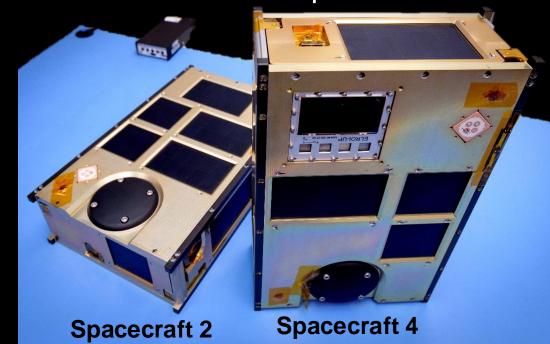


R5: Partnering and (Preliminary) Flight Results

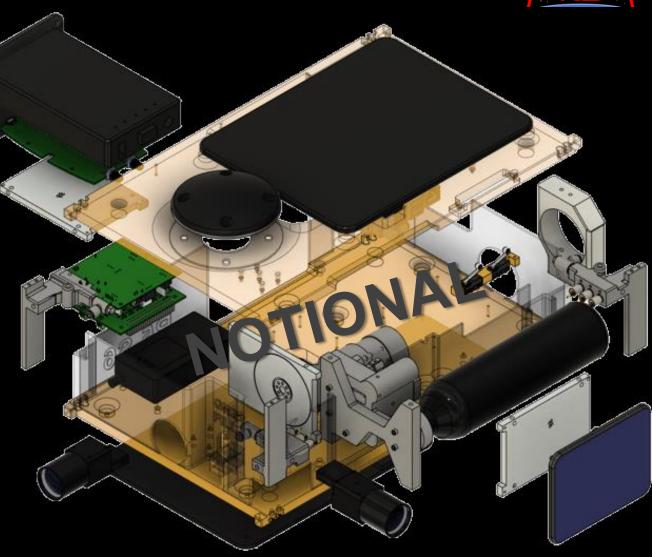
2024 Small Satellite Conference

August 2024


Sam Pedrotty, R5 Project Manager

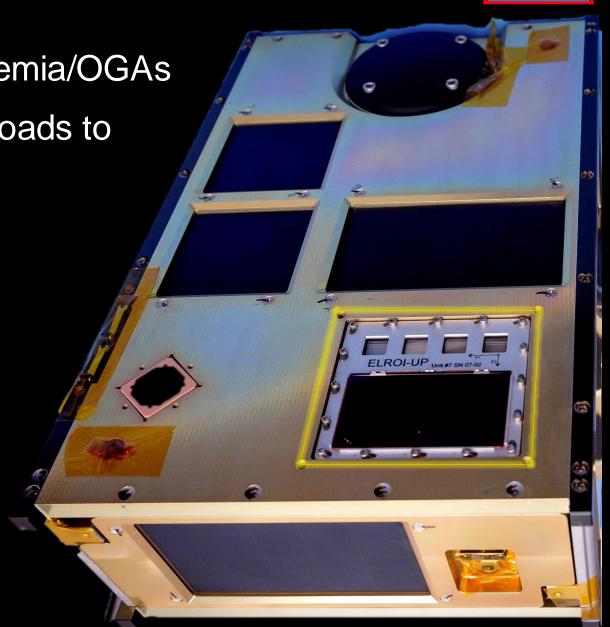
R5: Reassessing Cost and Speed

- STMD-funded, intended to provide rapid, low-cost, high-risk method to get TRL 4 payloads to TRL 8
 - Evaluating ultra-lean, COTS-based approaches to define new thresholds for cost and schedule
 - Hosting payload/technology demonstrations onboard each spacecraft
- Broadly share experience and lessons learned to accelerate/enable the small spacecraft community
- Status: 3 spacecraft launched, 2 operating, 2 approaching fabrication, more in planning



R5 Baseline

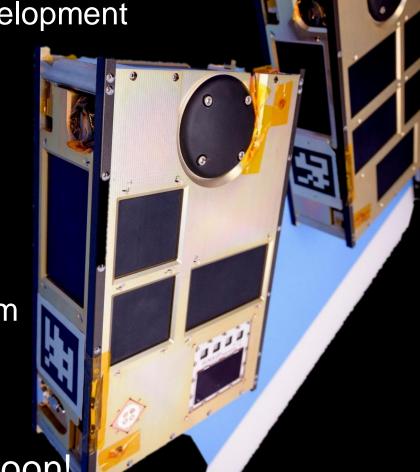
- Bus baseline:
 - Form factor: 6U (2x3U)
 - <u>Energy:</u> 70+ W*hr
 - Prop: 6DOF cold-gas
 - Comm: Iridium beacon, COTS-based SDR
 - Compute: "High performance" COTS
 - GNC: Full inertial, basic relative
 - Star tracker, IMU, reaction wheels, vision-based bearing
- Operations baseline
 - Ops autonomously executed onboard
 - Limited ground control possible
 - Resulting data autonomously and asynchronously downlinked


Partnering with R5

Current partners include industry/academia/OGAs

 Able to flexibly onramp secondary payloads to existing missions

- 3.3v, 5v, and 12v power baseline (able to add others)
- Variable internal geometry (not constrained to "U" form factors)
- Beyond payloads
 - Sharing software, data, best practices
 - Interested in technologies/processes that reduce cost/schedule and/or enhance capabilities



Spacecraft 2 and Spacecraft 4

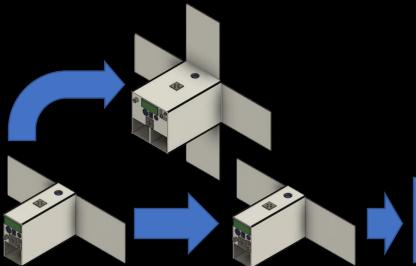
- Completely redesigned and rebuilt 10/23-03/24
 - Applied lessons learned, onramped parallel development
- Launched July 3, 2024 on Firefly FLTA005
- Spacecrafts deployed, powered on, started beaconing and quickly exceeded minimum mission success criteria!
 - Nominal propulsion performance
 - 1000B messages repeatedly achieved via Iridium
 - Star tracker performance poorer than expected
- Operations/data gather/analysis ongoing
- Additional information/publications coming soon!

- Spacecraft 2 and Spacecraft 4 lessons learned and detailed flight data and performance coming soon...
- We're interested in collaborating with you, especially in:
 - "Easy-to-license" RF comm
 - Optical comm
 - Proximity operations
 - Reducing cost
 - Reducing schedule
- Tentatively planning multiple missions in CY25

Contact Sam: sam.pedrotty@nasa.gov

Backup

R5 [Notional] Evolutionary Path



Reentry Vehicle [Notional]

Core avionics and new process enables subscale suborbital demonstration of reentry platform

Rendezvous Inspector [Notional]

Enable inspection of any client

Seeker 1

Demonstrated form factor and process feasibility

- Demonstrate new process
- Demonstrate core avionics
- Demonstrate responsive call-up
- Demonstrate first user payloads

R5 (Operational Target)

Execute multiple payload demonstration flights, advancing human spaceflight and SST technologies

Seeker 2 [Notional]

- Provides critical inspace inspection capability for crewed and uncrewed vehicles
- Far faster and cheaper after prior efforts

Seeker 3 [Notional]

Evolve inspector to servicer