Ask Me Anything Webinars - Session 9

TX05 – Communications, Navigation, and Orbital Debris Tracking and Characterization Systems and TX17 – Guidance, Navigation, and Control (GN&C)

TX and Subtopic	Question	Answer
TX05 - Communica tions, Navigation, and Orbital Debris Tracking and Characteriza tion Systems - H9.08	 Will a spot shielding solution directly D printed on electronic components will be of interest? Can you suggest a particular electronic component that we can coat? What are the temperature requirements? 	In terms of shielding for radiation environments, we're open to any approaches for increasing the performance of those devices on the lunar surface. Whether that's shielding or a device manufacturer difference or up screening? That would all be within the trade space so that would be a possibility of interest. The temperature requirements that we're looking at, ideally we'd like to get to systems that could survive the lunar night and to be able to handle rather extreme temperature ranges180 to plus 130C is a full range though that would be for the object that it's mounted to. If the device has some heating or can rely on internal heater cooling within its packaging then that could be taken into consideration too.
TX05 - Communica tions, Navigation, and Orbital Debris Tracking and Characteriza tion Systems - T5.06	What specific coordinate system representations are being considered, and what are their advantages or disadvantages?	Usually, we look at a Cartesian inertial central body centered frame like EME2000, maybe centered at a different body for at the Moon or Mars and otherwise it could be an orbital element frame. Advantages of that would be the separation of the slow changing elements and the fast-changing elements and different uncertainty propagation accuracies in in either frame.
TX05 - Communica tions, Navigation, and Orbital Debris Tracking and Characteriza tion	Can specific accuracy tolerances be defined for different orbital types to ensure that risk assessments are based on reliable data?	The accuracy of finding the conjunctions that is just going to be in comparison to other methods that are currently in use. That's the best way to compare accuracy of finding those conjunctions.

Systems - T5.06		
TX05 - Communica tions, Navigation, and Orbital Debris Tracking and Characteriza tion Systems - T5.06	The document mentions that solutions assuming elliptical orbits are acceptable but does not discuss the limitations of these models. Can specific limitations be addressed and quantified?	Limitations of using elliptical assumptions would just be that it won't apply to any any spacecraft or body that's that's in a hyperbolic or parabolic orbit, not captured. I think that's the only limitation of that. Separating out the the two orbital types because if it's just elliptical, sometimes certain models will will be easier, more efficient or faster.
TX05 - Communica tions, Navigation, and Orbital Debris Tracking and Characteriza tion Systems - H9.08	1) Does software/CAD development and demonstration of the 3GPP technology (such as RF front-end), meet the suggested Phase I objectives? 2) Are there any preferable 3GPP frequency band for lunar communications (low-band, mid- band, or high- band)? 3) Are there any targeted SWaP requirements for such systems?	For phase I a lot of it is conceptual development and flushing out the plan to get to a phase two. If this is a simulation and modeling or a software development effort, that would be of interest for phase I. Specifically, if that's proving out concepts that could be developed into Phase two technology. For frequency bands, we have interest both at FR1 and FR2 for near term plans. We do have some restrictions on the lunar surface within the shielded zone of the moon. That's set aside for radio astronomy. Those are going to be frequencies that are like sub gigahertz. Those would be a little bit tougher to work with. I don't have any numbers saying if you hit 250 watts that's going to be a deal breaker. But one of the things that I would consider to be a really good figure of merit for a proposed technology is how much it could reduce the swap burden for using the standard on the lunar surface.
TX05 - Communica tions, Navigation, and Orbital Debris Tracking	What specific metrics or benchmarks will be used to evaluate the efficiency of the proposed	So for efficiency, we're really looking at run times; algorithm run times compared to other methods. So of course, faster methods would be more efficient. In terms of accuracy, just miss distance smaller misses compared to other existing methods.

	1	
and Characteriza tion Systems - T5.06	methods for locating the minimum distance and location of the closest approach?	
TX05 - Communica tions, Navigation, and Orbital Debris Tracking and Characteriza tion Systems - T5.06	The phrase "efficient methods" is used without providing a definition or criteria for efficiency. Can a clear definition and performance metrics be provided for this term?	"Efficiency" would be faster run times of the algorithm for finding the same conjunctions as a other existing comparable methods.
TX05 - Communica tions, Navigation, and Orbital Debris Tracking and Characteriza tion Systems - T5.06	What criteria will be used to establish collision risk thresholds, and how will these thresholds be validated?	The call recognized this as a gap and so it's asking for studies to establish recommendations for overall environments other than the Earth. Parameterized examination of the environment to develop these thresholds for taking action, so typically based on uncertainties, the uncertainties of the of the ephemeris and so It's requesting, novel ways to come up with these thresholds in order to categorize the risk based on uncertainties.
TX05 - Communica tions, Navigation, and Orbital Debris Tracking and Characteriza tion Systems - T5.06	What specific obligations do the navigation teams have in providing trajectory data, and what are the repercussions if they fail to do so?	There's a NASA procedural requirement NPR 8079.1 that requires NASA missions to provide ephemeris information for conjunction screenings in environments with multiple resident space objects. For any party operating in that environment, failing to share ephemeris just increases the risk of collisions. Since objects are really not passively trackable at Lunar and Mars distances from the ground, the only way that we can find these conjunctions is by sharing information. And so failing to do that just really increases the risk of collisions.
TX05 - Communica tions,	Does a system level design and analysis of a	Assuming the radar system is made of a bunch of modules, I think they're asking if they can just simulate a single module. If that's the bottleneck for the full sensor then fine, but we need some

Navigation, and Orbital Debris Tracking and Characteriza tion Systems - Z- EXPAND.04	radar technology along CAD simulation results at the module level meet the suggested Phase I objectives for this topic?	confidence that the resulting full sensor will be able to be used to detect, gain, and then maintain custody of the small debris. For example, it may be the case that multiple radar stations or other sensors are also required to maintain custody of the debris as it goes overhead. A great response would estimate the performance of the full toolchain using this sensor and what the overall performance might be.
TX17 - Guidance, Navigation, and Control (GN&C) - H9.03	For the Autonomous Onboard Spacecraft Navigation and Guidance solicitation, is the development and application of novel computationally efficient physics models, needed for autonomous proximity operations, in scope for Phase I?	As long as the models justify increased computational efficiency of algorithms and software with the applications stated in the solicitation, the development as stated is in scope as it intersects a couple different sub-bullets on it.
TX05 - Communica tions, Navigation, and Orbital Debris Tracking and Characteriza tion Systems - Z- EXPAND.04	The topic description mentioned that (on page 351) "Radar systems in the X-band (or smaller wavelengths) can detect 1 cm debris". Can you help to point to references for this?	For example, the HUSIR radar is often used to statistically sample the small debris population. Here is a paper that describes such data collection campaigns. Radar Measurements of Orbital Debris from the Haystack Ultra- wideband Satellite Imaging Radar (HUSIR): 2020-2021 <u>https://ntrs.nasa.gov/api/citations/20230014281/downloads/Arnol</u> <u>d HUSIR IOC%20II final.pdf</u>
TX17 - Guidance, Navigation, and Control (GN&C) - H9.03	Would a product working with optical communication and autonomous	Generally, just software and algorithm development is referred to subtopic H9.03, with S16.03 looking into hardware development. Depending on what your firm proposes, that would be the general criteria to determine the subtopic in this area.

	relative	
	navigation	
	sensors within	
	scope for this	
	subtopic?	
TX05 -	What are some	There are lots of reasons why it is very difficult to track and maintain
Communica	of the	custody of small debris in general. It's very small and so it doesn't
tions,	characteristics	reflect much light or radars compared to larger objects, but many of
Navigation.	of space debris	those challenges may or may not apply here in the same way. It
and Orbital	which makes	comes down to doing that initial find and orbital determination and
Debris	tracking/identify	then being able to hand that over quickly to some other beam
Tracking	ing them	director. That handoff is not a part of this, but just we need to be
and	difficult? How	able to maintain custody of an object for only a few minutes one
Characteriza	close are they to	obiect at a time.
tion	each other? Do	
Systems - Z-	they constantly	
EXPAND.04	collide into each	
	other? Anv	
	significant	
	differences	
	between debris	
	size?	
TX05 -	For TX05.6 'Z-	The method of removing orbital debris that we are exploring here is
Communica	EXPAND.04: Low	using a ground based laser. If it is a proposal for a space based laser,
tions,	Earth Orbit	then that would be out scope. If the sensor for doing that initial
Navigation,	(LEO)	detection and maintaining custody happens to be in space, then
and Orbital	Sustainability	that would technically be in scope. You would need to justify why a
Debris	(SBIR)' (S14.01),	space based sensor or how many space based sensors would be
Tracking	specifically	required to perform.
and	'Scope Title:	
Characteriza	Small Debris	
tion	Tracking to	
Systems - Z-	Support Debris	
EXPAND.04	Removal', the	
	proposal	
	specifically	
	mentions	
	ground-based	
	solutions to	
	support laser	
	removal of	
	orbital debris.	
	Will space-	
	based solutions	
	that can support	
	laser removal of	
	orbital debris	

	also be	
TX05 - Communica tions, Navigation, and Orbital Debris Tracking and Characteriza tion Systems - Z- EXPAND.04	Considered? An additional follow up on TX05.X, Z- EXPAND.04: What are some of the characteristics of space debris which makes tracking/identify ing them difficult? How close are they to each other? Do they constantly collide into each other? Any significant differences between debris size? Can you help to point to some references to these?	If you are trying to build a catalog and maintain custody of these objects over longer periods of time, indeed it's a function of that. There's so many of them that it makes it very difficult that you may have a lot of tracks that appear to be relatively overlapping, and it's difficult to correlate measurements from 1 overpass to the next. Most of those concerns don't come into play for SBIR because we're not trying to maintain custody over the course of multiple revolutions. We just need to see the things that come up over the horizon and then be able to follow it for 2 minutes perhaps. The shape of these things will have an effect if they're sort of plate like and they're rotating, you may be trying to engage it when the debris is edge on to your sensor as opposed to perpendicular to the sensor which will change the amount of signal that you get back. These are some of the the considerations that make it hard to detect and then follow these types of objects.
TX05 - Communica tions, Navigation, and Orbital Debris Tracking and Characteriza tion Systems - Z- EXPAND.05 - HEO	Are there any specific phenomologies in mind? referring to HEO Orbit Tracking	We are not prescribed to any type of phenomenology. We just need to track the objects. Typically, the challenge is that these objects appear typically in low Earth orbit and higher Earth orbit. If you have another phenomenology that can go from Leo to Geo to do the tracking or be able to track it, one area to be able to accurately predict the orbits, the other areas, that's great as well.
TX05 - Communica	Non-Earth Orbit Conjunction Risk	The answer is no. There haven't been any previous STTRs developing methods specifically for non-Earth conjunction
tions, Navigation.	Analysis, have any algorithms	assessment.
and Orbital	or frameworks	
Tracking	in previous STTR	
and	efforts? If so,	
Characteriza	what are the	

tion Systems - T5.06	evaluation metrics and methodologies used to assess their effectiveness?	
TX17 - Guidance, Navigation, and Control (GN&C) - Z- EXPAND.03, Enhanced Space Traffic Manageme nt Technologie s for Small Spacecraft Swarms and Constellatio ns	For small satellite identification and tracking systems, is the focus on passive systems, or can active systems be proposed if they are operated independently of the host spacecraft?	The bottom line answer is yes. However, we have to look at if the independent method is not really part of the platform itself. Then there has to be a fairly reliable system of being able to main track of the item which were questioning. Yes, it could be an active system, but that active system must be able to assure with some high degree of reliability that it can maintain the lock with regard to the item of interest.
TX05 - Communica tions, Navigation, and Orbital Debris Tracking and Characteriza tion Systems - T5.07: Communica tions Quality of Service (QoS) Optimizatio n Through Network Autonomy (STTR)	Are there examples benchmarks/wo rkloads that are preferred for testing our QoS approaches?	There aren't a lot of benchmarks available for space networks, but an approach that I would recommend would be developing something like a lunar scenario or a set of multiple nodes. There's a wide variety of free simulators and network emulators that could be set up. That would be the comparison that we could use to develop your own benchmark.
TX05 - Communica tions,	For t5.07 is a rad hardened router and encryption	It would be related, it's not specifically routing, but a router would be a component. We're also looking for things that would be an emulation of the nodes and service. There'll be several pieces

Navigation, and Orbital Debris Tracking and Characteriza tion Systems - T5.07	unit sufficient to satisfy the phase 1 requirements	developing an algorithm, but definitely including things like what would that hardware look like, the swap and radiation tolerance that would all be excellent things to include.
TX05 - Communica tions, Navigation, and Orbital Debris Tracking and Characteriza tion Systems - Z- expand.04 - ADR	For Z-expand.04 ADR are the debris objects satellites or spent rocket bodies, or debris from collisions? Or is a solution that addresses all of these desired?	We can already maintain custody of large debris objects like large intact spacecraft, upper stages, etc. But as those objects either release debris as part of their normal missions, you could think flyaway bolts or deployment devices, sometimes they accidentally explode and generate small fragments. Very rarely do things collide and generate new fragments. We're looking at generally fragments of things that used to be active and we can track already anything that is 10 centimeters and larger. We are interested in ways of gaining temporary custody of objects that are smaller, at least as small as one centimeter.
TX05 - Communica tions, Navigation, and Orbital Debris Tracking and Characteriza tion Systems - Z- EXPAND.05 - HEO	Are desired solutions primarily on the hardware side, or would improvements in software / tracking algorithms potentially meet the needs of this scope?	SW solutions utilizing the network of existing sensor networks would be preferred, but advanced HW systems that might provide significant improvements over any SW solution alone would also be of interest.
TX05 - Communica tions, Navigation, and Orbital Debris Tracking and Characteriza tion Systems - Z- EXPAND.04 - Small	Can you define "removal" of space debris? Should the debris be vaporized, pushed out of orbit, or something else?	The scope of the EXPANDO 4 is not to develop the removal technology, it is before the removal technology could be applied. We must be able to find and lock onto these small pieces of debris and trying to address the concept of operations, however that the sensor sort of capabilities that were asking for the remediation capability would be nominally to use a laser that could generate a small amount of ablation. Laser nudging just the find the debris and follow it.

Debris		
Tracking to		
Support		
Debris		
Removal		
TX05 -	Space Debris	This study from 2024, and the previous study from 2023 (not linked
Communica	Prevention for	but publicly available), give a sense for the relative risk associated
tions,	Small Spacecraft	with large vs small debris. In general, tracked debris are sources of
Navigation,	(SBIR)	small debris due to fragmentation events; thus, the risk they pose is
and Orbital	(Previously	in proportion to their mass because more mass means more
Debris	Z8.13):	potential small fragments.
Tracking	Does NASA have	
and	data on the	Cost and Benefit Analysis of Mitigating, Tracking, and Remediating
Characteriza	relative threat	Orbital Debris
tion	of dead	https://www.nasa.gov/wp-content/uploads/2024/05/2024-otps-
Systems - Z-	cubesats on	cba-of-orbital-debris-phase-2-plus-svgs-v3-tjc-
EXPAND.04	orbit vs. other	tagged.pdf?emrc=675c53c77755f
- Small	debris? Basically	
Debris	we're trying to	
Tracking to	quantify the	
Support	significance of	
Debris	dead cubesats	
Removal	specifically?	
	(DOA/failed	
	cubesats that	
	can't deploy	
	their deorbit	
	devices)	
TX05 -	Following up on	The focus is not on small debris. It is generally on larger debris and
Communica	Z Expand.04	we're looking for ways of getting controlled reentry of objects that
tions,	ADR, the	are larger than 1000 kilogram or what's called just in time collision
Navigation,	solicitation asks	avoidance, which is when you have two large objects that might be
and Orbital	for controlled	about to hit each other. You could avoid that collision by nudging
Debris	reentry of large	one of those objects out of the way of the impending collision. That
Iracking	debris greater	could also be done with a laser.
and	than 1000km,	
Characteriza	but in your	
τιοη	latest	
Systems - Z	clarification you	
Expand.04	cited the most	
ADK	Interest is in	
	depris smaller	
	than Lucmthis	
	seems	
	do you wast	
	solutions for	
	SOLUTIONS TOL	

	large debris as well?	
TX17 - Guidance, Navigation, and Control (GN&C) - S16.03	Would proposals to develop low SWaP high- resolution sub- components of inertial measurement units (IMUs) be acceptable for GNC applications? For example, sensor development is solely focused on accelerometers or gyroscopes.	The development of submodules of an IMU would be acceptable, especially if they produce savings in swap, especially size and and power or increased performance.
TX17 - Guidance, Navigation, and Control (GN&C) - H9.03	The scope mentions several capabilities already developed by NASA such as cFS, GIANT, etc. Is it required that proposals incorporate existing NASA tech? Is it expected that integration with these packages occurs during Phase I?	It is not required but is highly encouraged. An infusion process enables awareness that connects capability and deliverables to our bigger picture NASA mission program needs. If you do decide to do so, it does not need to occur during Phase 1 but should be considered as the technology develops.
TX05 - Communica tions, Navigation, and Orbital Debris Tracking and Characteriza	Regarding hardware for extreme lunar temperatures (- 180°C to +130 °C on the lunar surface):	Yes. Speaking to hardware operation for temperature, I think it would be a two-part answer. If we just had hardware that could survive the lunar night and become operable again during the next lunar day, that would be of interest. If you have hardware that could operate throughout the lunar night, that would be of more interest, but we'd be interested in both types of technologies.

tion	-Does the	
Systems -	hardware need	
H9.08:	to be operable	
Lunar 3GPP	at those	
Technologie	evtreme	
c	temperatures	
5	or it only noods	
	of it only needs	
	to survive (and	
	operate/commu	
	nicate) in	
	extremes	
	temperature?	
	-Are	
	technologies	
	that only focus	
	on radiation	
	tolerance in	
	lunar	
	environment	
	(that basically	
	assume	
	presence of	
	other	
	cooling/heating	
	mechanisms	
	outside of the	
	wireless	
	hardware)	
	acceptable for	
	this topic?	
IX1/-	Has language	with respect to green propenants, green technologies, that's a very
Guidance,		popular term. It doesn't identify specific fuel mixtures in regard to
Navigation,	technologies	that, but in general it's addressed as a properlant that doesn't leave
	Include those	toxics of any sort relative to it. It's also one that does not leave large
(GN&C) - Z-	based on fueled	particulates as a result of the burn. Five ascent in hand are green
expand-03	propulsion	properiants, but also in terms of green propulsion, you have solar
	systems using	salling and some other techniques that are used that essentially are
	nontoxic tueis,	very green with respect to the residuals. They might leave as a as
	green	they do the propulsion activity.
	cechnologies,	
	and propenants.	
	what is defined	
	as Green lech	
	and propenants?	
	is Green based	
	upon immediate	

TX05 - Communica tions, Navigation, and Orbital Debris Tracking and Characteriza tion Systems - T5.07: Communica tions Quality of Service (QoS) Optimizatio n Through	hazard to human technicians or long term persistent hazards such as mutagens, carcinogens, etc? Is a green propellant allowed to any of the popular propellants such as AFM-315E, ASCEND, HAN, ? Is there a particular size of propulsion that is allowed or not allowed? What is meant by network autonomy? Is this referring to the network nodes adapt their own QoS policies given reliability metrics (e.g., dropped packets) or will the changes still involve some human-in-the- loop?	It is more closely the first part where you're saying where the network would be adapting. To reliability metrics and performance there, there still would be because this is a policy management, there would still be the concept of there's a user and then there is a service agreement as part of the network. But then it's taking actions in an autonomous manner.
n Through Network Autonomy (STTR) TX05 - Communica	Is it assumed that the	It is not an assumption that the propulsion system would operate for the duration if the means actively engaged in propelling. It is
tions, Navigation, and Orbital Debris	propulsion tech operate for the duration of the mission. Is there	assumed that the propulsion system would work when they require it to work during the entire mission and there is no specific quantitative numbers of starts and stops. If that's referring back to the amount of particulates are contaminants set at may result in

Tracking and Characteriza tion Systems - Z- expand-03	an expected number of starts, or delta - v?	that would be dependent upon the mixtures of the propellant as to what that would be. Then you would need to know how many active propulsion events you had.
TX17 - Guidance, Navigation, and Control (GN&C) - S16.03 Guidance, Navigation, and Control	High temperature superconductor attitude control system is applicable?	I take this to be if our high temperature superconductor is something that we would be looking for. I wouldn't rule them out. It would depend on their application to basically making higher performance lower swap. Add to control systems, so it depends on what the application is.
TX17 - Guidance, Navigation, and Control (GN&C) - Z- Expand-03	Is there a minimum number of starts, that would be of interest for propulsion tech?	There is no minimum number of starts. All of that is very mission dependent. They would have to just quantify on the basis of extreme scenarios. Relative to normal type of mission executions.