

### Lunar Flashlight Mission Overview



#### Philippe Adell, PhD.

On behalf of LF Team Wednesday, July 10, 2024 S3VI Community of Practice Webinar Series



Jet Propulsion Laboratory California Institute of Technology



## Outline

- Why are we using Small Spacecraft Technologies
- Past and future deep space mission using Small Spacecraft
- Lunar Flashlight mission overview
  - History and Background
  - Mission objectives and Radiation Hardness Assurance
  - Spacecraft overview and I&T activities
  - New technologies demonstrated
  - Operation activities and in-flight technology demonstrations
  - Propulsion anomaly
  - Conclusion

## Small Spacecraft Technology: WHY?

- For technology demonstrations in relevant environments
- A low cost approach for focused science objectives and enable new science via novel architectures
- Solidify the partnership between space, academia and industry to maximize innovation
- For low cost constellation and global activities monitoring (imaging and communication)
- For hands-on training opportunities for young professionals

Vision is to develop, low-cost missions on a broad range of science and commercial applications



#### Known Challenges

- Propulsion, Communications
- Environments, Power, ADCS
- Thermal, Energy storage
- Proximity operations and autonomy

#### Less Obvious Challenges

- Multi-mission ground operation systems
- Planetary protection, Hazard avoidance
- Flight software standards

\*Proposed Mission - Pre-Decisional - for Planning and Discussion Purposes Only Reviewed and determined not to contain CUI.



## MARS PHOTO FROM MARCO \$40 COTS CAMERA

JPL

**Approach & Initial Characterization** 2/2029

Earth Closest Approach (ECA) 4/13/2029

## MISSION TO APOPHIS DROID



Post-ECA Characterization Until EOM

**EP Cruise**  $\Delta V = 2.5 \text{ km/s}$ 

Launch By 5/2028  $C_3 = 2 \text{ km}^2/\text{s}^2$ 



## Outline

- Why are we using Small Spacecraft Technologies
- Past and future deep space mission using Small Spacecraft
- Lunar Flashlight mission overview
  - History and Background
  - Mission objectives and Radiation Hardness Assurance
  - Spacecraft overview and I&T activities
  - New technologies demonstrated
  - Operation activities and in-flight technology demonstrations
  - Propulsion anomaly
  - Conclusion

### Lunar Flashlight History





Sketch by P. Hayne (c. 2014) of the solar sail-based concept for Lunar Flashlight.

Because so few solar photons are reflected in PSRs, the mission could not rely on passive spectroscopy by solar illumination. Maneuvering into and maintaining lunar orbit using a solar sail was almost impossible. LF project changed its technical approach, moving to a chemical propellant and to an active illumination source for measurement.

## **Lunar Flashlight Mission Objectives**

- Demonstrate new technologies with a stretch goal of detecting surface ice deposits in the south pole lunar cold traps
- Demonstrated the following technologies:
  - Green monopropellant miniaturized propulsion system
  - First ~2U miniaturized 4 IR laser reflectometer
  - New C&DH sub-system: Sphinx computer board / interface board- now commercially available
  - IRIS deep space radio new generation with new firmware – now commercially available

#### **Key Parameters**

| Form<br>Factor | # Spacecrafts             | Orbit               | Altitude<br>(perigee/apogee)      | Launch Date               |
|----------------|---------------------------|---------------------|-----------------------------------|---------------------------|
| 6U             | 1                         | Lunar Orbit         | 10-20km Perilune<br>~65km Apolune | 12/11/2022                |
| Mass           | Dispenser or<br>Interface | Mission<br>Duration | Comm Licensing<br>Status          | Current<br>Phase/Activity |
| 13.3 kg        | 6U dispenser              | ~1 year             | Complete                          | Finished                  |



## **Team Composition**

| Management       | Principal Inv                | /estigator         | Project Manager |                        | Mission Systems Enginee |                  |  |
|------------------|------------------------------|--------------------|-----------------|------------------------|-------------------------|------------------|--|
| Team Member Name | B. Col                       | B. Cohen           |                 | J. Baker/P. Adell      |                         | A. Shao/C. Kneis |  |
| Organization     | NASA-C                       | NASA-GSFC          |                 | NASA-JPL               |                         | NASA-JPL         |  |
| Device of 9 Due  |                              | Teek               |                 | Task Dam               | _                       | 0                |  |
| Payload & Bus    | Instrument #1                | lecn               | Demo            | Tech Demo              |                         | Spacecraft Bus   |  |
| Title/Acronym    | 4 IR Laser<br>Reflectometer  | IRIS rad           | io / C&DH       | Green Prop System      |                         | Avionics         |  |
| Organization     | JPL                          | J                  | JPL MSFC-GT     |                        | JPL                     |                  |  |
|                  |                              |                    |                 |                        |                         |                  |  |
| Data Systems     | Mission Operations<br>Center | Science Op<br>Cent | erations<br>er  | Ground Station/Network |                         | Data Repository  |  |
| Title/Acronym    | MOC                          | GDS                | S DSN           |                        |                         | Science Data     |  |
| Organization     | GT                           | UCL                | A               | JPL                    |                         | GSFC             |  |

## Lunar Flashlight Risks and Mitigations

## Top 3 Risks....

|   | Risk Description                                                                      | Mitigation Approach                                                                                                                                                                                                                                                                                                  |
|---|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Non-Flight Payload End-to-End Verification test                                       | Extensive testing on the ground for instrument calibration                                                                                                                                                                                                                                                           |
| 2 | Non-Flight Propulsion End-to-End test (only one tank and once fueled no turning back) | <ul> <li>Performance was verified using system-level flat-sat</li> <li>Used spare controller, pump, valves, thruster</li> <li>Used stand-in parts for manifold/tank</li> <li>Verified all components worked as expected</li> <li>Hot-fire testing verified that the system meets performance requirements</li> </ul> |
| 3 | First time Georgia Tech operated a spacecraft                                         | Extensive training by JPLers<br>JPL shadowed GT during the entire mission operation                                                                                                                                                                                                                                  |

#### We carried about 58 Risks throughout the project

## Outline

- Why are we using Small Spacecraft Technologies
- Past and future deep space mission using Small Spacecraft
- Lunar Flashlight mission overview
  - History and Background
  - Mission Technology objectives and Spacecraft Overview
  - Radiation Hardness Assurance and I&T activities
  - Operation activities and in-flight technology demonstrations
  - Propulsion anomaly
  - Conclusion and Lessons Learned

### **Mission Technology Objectives**

| L1 Technology Objectives                                                                                     | Technology Demonstration in Flight                                                                                                           |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Lunar Flashlight size: LF shall be a 6U CubeSat form factor compatible with a NASA provided CubeSat deployer | This L1 requirement was met                                                                                                                  |
| Weight less than 14 kg                                                                                       | Spacecraft measured mass: 13.29 kg                                                                                                           |
| Do not harm primary payload (succesful after launch)                                                         | Post-launch payload checkout was successful                                                                                                  |
| Test green propulsion (AF-M315E) technology<br>at the CubeSat Scale (successful after first firing)          | Fired the thrusters over 70 times                                                                                                            |
| Test Sphinx Flight Computer (successful upon boot up)                                                        | Flight computer successfully booted up and ran the SMS after launch                                                                          |
| Test C&DH interface board (successful post boot-up to assess other sub-systems)                              | All sub-systems interfaced with in flight                                                                                                    |
| Test in flight compact high power lasers at the CubeSat scale                                                | Successfully fired during payload checkout activities and fired at 10, 30 and 90 seconds with a total of 14 firings                          |
| Test IRIS radio with new performance upgrades                                                                | 400+ successful contacts with the DSN (60-150 min) - in flight analysis allowed 2.5 hours in full duplex with ~30-60 min before next contact |

LF was a NASA funded technology demonstration mission with a secondary science goal of detecting water ice at the Moon PSR

### **The Lunar Flashlight Spacecraft**



Major Spacecraft subsystems and components (left) and the spacecraft photo during final I&T at Georgia Tech (right)

### Four New Technologies successfully demonstrated

New C&DH sub-system: Sphinx new computer board with new interface board – Commercially available

First ~2U miniaturized 4 IR laser reflectometer to detect surface water ice



electronics

boards

board



**IRIS** deep space radio new generation with new firmware -Commercially available



New Green propellant miniaturized propulsion system - Commercially available

FSW F-Prime, open source flight system product line for embedded systems

### **Key Sub-system Components**

| Subsystem     | Description                                                            | Vendor        | Subsystem   | Description                                              | Vendor     |
|---------------|------------------------------------------------------------------------|---------------|-------------|----------------------------------------------------------|------------|
| Instrument #1 | 4 IR Laser Reflectometer                                               | JPL/SLI/DILAS | Sun sensors | 4x with 0.05 deg accuracy                                | JPL        |
| Bus C&DH      | Sphinx                                                                 | JPL/Cobham    | Bus Power   | Solar/EPS/Batteries                                      | -          |
| Processor     | GR712 LEON-3                                                           | Cobham        | EPS         | 9-12.3 V unregulated / 5 and 3.3 V regulated Power board | JPL/SLI    |
| Data Storage  | 256 Mb – SDRAM<br>8G - NAND                                            | 3Dplus        | Batteries   | 6.2 Ah, 3s2p Panasonic 18650 Li-ion<br>Cells- 49 W/hr    | Panasonic  |
| Bus Comm      | IRIS deep space radio                                                  | JPL/SDL       | Solar Array | 2Ux3U Solar Array x2<br>Hawk Solar Array x2<br>60W/hr    | BCT<br>MMA |
| Radio         | IRIS X-Band transponder                                                | JPL/SDL       | Propulsion  | AF-M315E pump fed miniaturized<br>propulsion system      | MSFC/GT    |
| Antenna       | Rx / Tx LGAs                                                           | JPL           | Thrusters   | 4x100mN                                                  | Rubicon    |
| Bus GNC       | GNC Module                                                             | BCT           | Propellant  | AF-M315                                                  | AFRL       |
| XACT-50       | GNC module (RW 3x50<br>mNms, Star tracker ~0.01º,<br>IMU 3 deg/h bias) | BCT           | Tank        | AM Ti-6-4 manifold                                       | GT/MSFC    |

FSW F-Prime, open source flight system product line for embedded systems

## Outline

- Why are we using Small Spacecraft Technologies
- Past and future deep space mission using Small Spacecraft
- Lunar Flashlight mission overview
  - History and Background
  - Mission Technology objectives and Spacecraft Overview
  - Radiation Hardness Assurance and I&T activities
  - Operation activities and in-flight technology demonstrations
  - Propulsion anomaly
  - Conclusion and Lessons Learned

### **Lunar Flashlight Radiation Requirements**



SEP and GCR Heavy Ion Fluxes behind 25 Mils Aluminum shielding (CRÈME96 Model)



No Critical Event at an LET of 37 MeV.cm<sup>2</sup>/mg is typical for low cost mission Followed JPL standard for Type II/Tech demo

## **Radiation Hardness Assurance (RHA) - LF**

- Lunar Flashlight TID assessment relied on a good part review process
  - Because of TID requirement is not benign, we relied on an hybrid architecture
  - Parts review focused only key radiation effects: destructive (SEE and SEL) and total dose with RDF=1
  - No radiation lot acceptance testing (RLAT) were performed
  - Relied on existing data of equivalent parts or technologies from reliable source
  - For key sub-system, relied on **some board level testing** (i.e. propulsion system)
  - For parts that did not meet the TID requirement, parametric or functional we used a shielding analysis approach and accepted the risk

#### We did not go fully COTS – we use an hybrid approach

## **Radiation Hardness Assurance (RHA) - LF**

ARS Parts Acquisition and Review System

PARS Overview 🚨 PARS Help

|                   |                    |        | Home   Parts Search   Philippe C Adell [ LogOut ]   Logged In as: JPLe |
|-------------------|--------------------|--------|------------------------------------------------------------------------|
| Public View       | My Dashboard       | Report |                                                                        |
| Project: Show All | → □ Include Archiv | e      |                                                                        |

Report

#### Parts Manager Module (CogE-View)

| Part Lists (CogE) |                                                              |                   |                                |                       |                  |                 | Q = 💽 🔀          |
|-------------------|--------------------------------------------------------------|-------------------|--------------------------------|-----------------------|------------------|-----------------|------------------|
| Project           | Part List Name                                               | #Parts<br>Changed | #Parts<br>Require<br>Attention | Recently<br>Submitted | #Active<br>Parts | #Total<br>Parts | Last<br>Modified |
| Lunar Flashlight  | EPS (EPS) (Review) (Edit)                                    |                   | 0                              | 54                    | 54               | 75              |                  |
| Lunar Flashlight  | Interface Board (Interface Board) (Review) (Edit)            |                   | 0                              | 56                    | 57               | 62              |                  |
| Lunar Flashlight  | Driver Connect Board (LFPS Driver Connect) (Review) (Edit)   |                   | 0                              | 8                     | 8                | 8               |                  |
| Lunar Flashlight  | Main Controller Board (LFPS Main Controller) (Review) (Edit) |                   | 0                              | 59                    | 59               | 59              |                  |
| Lunar Flashlight  | Sensor Board (LFPS Sensor) (Review) (Edit)                   |                   | 0                              | 15                    | 15               | 15              |                  |
| Lunar Flashlight  | Analog Electronics (Payload Analog) (Review) (Edit)          |                   | 0                              | 9                     | 9                | 9               |                  |
| Lunar Flashlight  | Digital Electronics (Payload Digital) (Review) (Edit)        |                   | 0                              | 64                    | 64               | 64              |                  |
| Lunar Flashlight  | Power Payload (Power Payload) (Review) (Edit)                |                   | 0                              | 40                    | 41               | 41              |                  |
| Lunar Flashlight  | Sphinx FM (Sphinx FM) (Review) (Edit)                        |                   | 0                              | 66                    | 66               | 74              |                  |
| Lunar Flashlight  | XACT (XACT) (Review) (Edit)                                  |                   | 0                              | 30                    | 30               | 30              |                  |

#### About 500 active parts were used to build the spacecraft – 50% were COTS parts

## **Residual Parts not meeting LF TID level**



- About 10% of component were accepted after shielding analysis
- Relied on relevant parametric degradation without margin

| Portad |                                                     | 15                                                                     |
|--------|-----------------------------------------------------|------------------------------------------------------------------------|
|        |                                                     |                                                                        |
|        | Board                                               | TID (rad, Si)<br>RDF=1                                                 |
|        | Board<br>Board 1                                    | TID (rad, Si)<br>RDF=1<br>3.87E+02                                     |
|        | Board<br>Board 1<br>Board 2                         | TID (rad, Si)<br>RDF=1<br>3.87E+02<br>7.83E+02                         |
|        | Board<br>Board 1<br>Board 2<br>Board 3              | TID (rad, Si)<br>RDF=1<br>3.87E+02<br>7.83E+02<br>1.04E+03             |
|        | Board 1<br>Board 1<br>Board 2<br>Board 3<br>Board 4 | TID (rad, Si)<br>RDF=1<br>3.87E+02<br>7.83E+02<br>1.04E+03<br>3.96E+03 |

We ran a COARSE shielding analysis to assess parts TID level within the S/C structure

### **Board Level TID Testing Results on Prop system controller**



- For cost reason, board level testing was selected and give a more representative system response
- Test at High Dose Rate (10 rad/s) to 30 krad [0, 10, 20, 25, 30]
- 12 parts show no measurable degradation when operating in the system
  - Only 2 parts showed parametric degradation and were accepted after refined shielding analysis

#### Board level testing showed as a promising cost-effective approach

## **RHA Summary**

#### Define the environmental threats

• TID was a threat as well as Destructive SEEs (SEB, SEL and SEGR)

#### Set survivability requirements

- For TID we used 10 krad (Si) with an RDF of 1
- For SEE we used type II SEE requirements; i.e. not even at LET of 37 MeV.cm<sup>2</sup>/mg

#### Apply existing data and/or test sensitive components

- Use existing data obtained on other program from JPL database (reliable source)
- Removed parts that failed functionally
- Use board level testing when applicable

#### Explore mitigation solutions as required

- For parts that failed parametric; look at the design and assess impact
- For parts of concerns; run a COARSE shielding analysis to assess "real" TID level
- Use COTS parts where you can; otherwise use Rad-Hard parts
  - For key sub-system we used an hybrid approach (combination of COTS and Radhard components)

#### Spacecraft Electronics performed very well during 12 months operation

### **Basic LF Spacecraft I&T Flow**



JPL provided integrated avionics + instrument + solar arrays MSFC-GT provided propulsion system Georgia Tech was third party integrator to S/C delivery

### Vibe Test @GT



### Plug Out Test and TVAC Test @GT

#### Plug out Test

#### **TVAC** Test



#### **Solar Array Deployment Test**



## LF photos prior to packing...



Reviewed and determined not to contain CUI.

## LF photos prior to packing...



## LF Prior to shipping



#### Lunar Flashlight captured in Dispenser Shipping from MSFC to KSC on **November 9<sup>th</sup> 2022**

## Outline

- Why are we using Small Spacecraft Technologies
- Past and future deep space mission using Small Spacecraft
- Lunar Flashlight mission overview
  - History and Background
  - Mission Technology objectives and Spacecraft Overview
  - Radiation Hardness Assurance and I&T activities
  - Operation activities and in-flight technology demonstrations
  - Propulsion anomaly
  - Conclusion and Lessons Learned

#### Successful Launch – December 11, 2022



### LUNAR FLASHLIGHT ANIMATIONS

11/14/2022

## **Early Operations**

### ...quickly into an anomaly mode

#### Immediate thruster problems

- First de-sat increased spacecraft momentum state
- Severe Thruster 1 underperformance
- Initial testing showed Thruster 3 low performance
- During further testing, Thruster 2 went to zero
- Resulting priorities for LF team
  - Update FSW and ACS params to operate safely during thruster testing
  - Figure out how to do TCMs
  - Find a trajectory with delayed TCMs
  - Figure out smaller LOI
  - Try to recover thruster performance
  - Implement rotating TCMs



After a few months of operation, we tried many TCM scenarios but propulsion system could not give us expected performance

### **Mission Science Objectives**

| [Old L1 Mission Objective] L1-01: Address SKG -<br>Lunar Flashlight shall have the capability to address<br>a key strategic knowledge gap at the moon.<br><u>Full Success Criteria:</u> Detect and map surface<br>water ice on the moon with a spatial resolution of<br>1 km over 10% of the permanently shadowed<br>and occasionally sunlit regions poleward of 80<br>deg S latitude.<br><u>Minimum Success Criteria:</u> Demonstrate the<br>ability to detect surface water ice content with a<br>spatial resolution of 10 km or better with<br>multiple measurements in permanently<br>shadowed and occasionally sunlit regions<br>poleward of 80 deg S latitude. | This L1 requirement was deprecated after the propulsion system anomaly was discovered and assessed, but the flight data from the successful payload firings and payload dither activity indicate that the payload worked as expected, and that theoretically the laser technology would allow us to detect surface water ice content in permanently shadowed and occasionally sunlit regions of the moon. Though we were unable to make it close enough to the moon to demonstrate this, the data indicates that the payload would have operated as intended at the moon. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Due to the propulsion system anomaly, LF could not reach the moon; impacting L1 science requirement even we proved the instrument could have detect surface water ice based on flight date

### Key results 1 – LF instrument operation – Now TRL 9

4-Laser IR reflectometer: concept of operation

- Lasers in 4 different near-IR bands illuminate the lunar surface in a spot ~15-20 m in diameter
- Light reflected off the lunar surface enters the spectrometer to distinguish water ice from regolith
  - Band depths to absolute reflectance values
  - Correlated bands to disambiguate water ice from CO<sub>2</sub>



Direction of travel

Round-trip pulse time is ~50-70 us

30 ms

Spot 2

6 ms

Spot 3.

6 ms

Receiver aperature

www

6 ms

- 30 ms

Spot 1

### Key results 1 – LF instrument operation – Now TRL 9

Successful flight demonstration – many successful laser firing sequences



In Flight Data ~90s experiment – detect surface ice at the Moon feasible

#### Key results 1 – LF instrument operation – Now TRL 9

Panopticon (P007) – Antofagasta, Chile 05/17/23 Detected 09:10:34 UTC. Scheduled 09:00:00-09:14:06 UTC



Passing by Earth was an opportunity to fire payload laser at couple of observatory

### Key results 2 – PN DDOR

Pseudorandom-Noise (PN) Delta Differential One way Ranging (DDOR) with DSN



- DDOR provides critical navigation data with less spacecraft transmission than ranging/doppler and less antenna contention on busy launches
- PN DDOR enhances Classic DDOR with improved ambiguity resolution and performance
- The Iris radio has successfully demonstrated PN DDOR in-flight on Lunar Flashlight

# Residuals showed consistency between classic and PN DDOR 1<sup>st</sup> LF PN DDOR benefited from improved ambiguity resolution

### Key results 3 – OPNAV (1/2) – Extended Mission

The Lunar Flashlight Optical Navigation Experiment with a Star tracker



Apparent path of Moon (black) and Earth (blue) as seen by LF against the celestial sphere during the LONEStar OPNAV campaign. Black dots are Moon line-of-sight measurements.

(LONEStar) demonstrated new celestial triangulation algorithms in heliocentric space using nearly 400 images of stars, distant planets, and the Earth and Moon

### Key results 3 – OPNAV (2/2) – Extended mission

Simultaneous imaging of Mercury + Mars permitted instantaneous localization of the LF spacecraft using the new LOST algorithm

Short exposure OPNAV images



The entire Mercury + Mars imaging campaign was conducted within the camera's recommended Sun Keep-Out-Zone (KOZ).

## Outline

- Why are we using Small Spacecraft Technologies
- Past and future deep space mission using Small Spacecraft
- Lunar Flashlight mission overview
  - History and Background
  - Mission Technology objectives and Spacecraft Overview
  - Radiation Hardness Assurance and I&T activities
  - Operation activities and in-flight technology demonstrations
  - Propulsion anomaly
  - Conclusion and Lessons Learned

## Lunar Flashlight Propulsion System (LFPS)



## **Final Fish Bone**



## So, how do we get to the Moon?

How Many Working Thrusters?



#### Key results 4 – Rotating TCM with single thruster Rotating TCMs Worked!



- Rotate the spacecraft about the force vector (using the reaction wheels) while firing a thruster to generate torque
- Over a complete rotation, the torque impulses cancel out
- Pick rotation rate and average torque level (thruster duty cycle) to keep momentum within reaction wheel capacity

#### Due to propulsion anomaly, LF team had to be creative to develop TCMs

#### Lunar Flashlight Propulsion System Flight Activities and Performance



We got about 16.2 m/s out of the propulsion system; not enough to get to the moon!

## **The Culprit**



## **Lessons Learned and Recommendations: Design**

#### Potential Sources of FOD

- Sintered particles or powder from the additive manufacturing process
- Machining debris/burrs
- Krytox lubricant
- Methods of dislodging
  - Launch / prelaunch vibration loads
  - Cyclical pressurization and flow

#### Prevention

- Chemical etch surface finish
- Abrasive cleaning
- Mitigation
  - Filters



#### **Printed Manifold**

## **Lessons Learned and Recommendations: Testing**

# Q CT Scanning

Might have spotted potential FOD



- No flight-like tank/manifold
- Eiquid Flow Testing
  - Only used helium



Only tested at system level



Printed Manifold after Machining

## Conclusion



Image of Earth Captured by Lunar Flashlight (2023-05-17 at 20:43 UTC)

- Lunar Flashlight was a successful technology demonstration mission
  - ASCENT propulsion system
    - 16.2 m/s ∆V imparted
    - <u>Application:</u> fuel efficient small satellite propulsion and planetary exploration
  - Infrared laser reflectometer instrument
    - <u>Application:</u> High-power laser for Optical comm
  - Sphinx C&DH with F Prime FSW
    - <u>Application:</u> Smart and energy efficient avionics
  - First flight demonstration of PN DDOR
    - <u>Application:</u> precision rendezvous on other planetary objects using PN DDOR
  - 1<sup>st</sup> LF OPNAV experiment successful
    - <u>Application:</u> AutoNav using OpNav capability
    - Reference: <u>https://arxiv.org/abs/2401.12198</u>

## **Top 3 Lesson Learned**

|   | What Happened?                                         | What did we learn from it?                                                                                                                                                                                                         | Proposed Mitigation<br>Strategies                                                  | Recommended Actions                                                                                                         |
|---|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 1 | Foreign Object Debris<br>(FOD) in propulsion<br>system | Potential source: Sintered particles or<br>powder from additive manufacturing<br>process<br>Machining debris/burrs<br>Lubricant<br>Methods of dislodging: Launch<br>prelaunch vibration loads, cyclical<br>pressurization and flow | Chemical etch surface<br>finish<br>Abrasive cleaning<br>Filter                     | CT scanning<br>Flight like Hot fire testing<br>Liquid flow testing<br>AM parts vibration test                               |
| 2 | Spacecraft Operation by Georgia Tech                   | Universities can do spacecraft operation with proper training and guidance                                                                                                                                                         | Shadowing by Subject<br>Matter Expert from JPL                                     | Universities are a great resources for small size projects                                                                  |
| 3 | Project implementation challenges                      | Keep same team over the project<br>lifecycle<br>Need combination of young<br>engineer/experienced engineers<br>Tailor large mission processes to make<br>the workflow manageable                                                   | Maintained a small and<br>dedicated team<br>Good communication<br>Tailor processes | Tailor processes that are<br>used for large mission<br>Standardize and simplify<br>documentation<br>Optimize your resources |

## References (1/3)

- [1] D. Andrews, G. Huggins, E. G. Lightsey, N. Cheek, N. Daniel, A. Talaksi, S. Peet, L. Littleton, S. Patel, L. Skidmore, M. Glaser, D. Cavender, H. Williams, D. McQueen, J. Baker, and M. Kowalkowski, "Design of a Green Monopropellant Propulsion System for the Lunar Flashlight CubeSat Mission," in Proc. Small Satellite Conference, SSC20-IX-07, 2020, <a href="https://digitalcommons.usu.edu/smallsat/2020/all2020/155/">https://digitalcommons.usu.edu/smallsat/2020/all2020/155/</a>.
- [2] J. A. Cancio and E. G. Lightsey, "Angular Momentum Desaturation Solutions for Lunar Flashlight Anomalous Thrust Scenarios," 2023, Master's Report, Georgia Institute of Technology.
- [3] N. Cheek, N. Daniel, E. G. Lightsey, S. Peet, C. Smith, and D. Cavender, "Development of a COTS-Based Propulsion System Controller for NASA's Lunar Flashlight CubeSat Mission," in Proc. Small Satellite Conference, SSC21-IX-06, 2021, https://digitalcommons.usu.edu/ smallsat/2021/all2021/196/.
- [4] N. Cheek, C. Gonzalez, P. Adell, J. Baker, C. Ryan, S. Statham, E. G. Lightsey, C. Smith, C. Awald, and J. Ready, "Systems Integration and Test of the Lunar Flashlight Spacecraft," in Proc. Small Satellite Conference, SSC22-II-06, 2022, https://digitalcommons.usu.edu/smallsat/ 2022/all2022/149/.
- [5] B. A. Cohen, P. O. Hayne, B. T. Greenhagen, and D. A. Paige, "Lunar Flashlight: Exploration and Science at the Moon with a 6U Cubesat," in AGU Fall Meeting Abstracts, 2015, pp. EP52B–07.
- [6] B. A. Cohen, P. O. Hayne, B. T. Greenhagen, D. A. Paige, J. M. Camacho, K. Crabtree, C. Paine, and G. Sellar, "Payload Design for 1 the Lunar Flashlight Mission," in Proc. Lunar and Planetary Science Conference, 2016, <a href="https://ntrs.nasa.gov/citations/20170002470">https://ntrs.nasa.gov/citations/20170002470</a>.
- [7] B. A. Cohen, R. R. Petersburg, D. R. Cremons, P. S. Russell, P. O. Hayne, B. T. Greenhagen, D. A. Paige, J. M. Camacho, N. Cheek, M. T. Sullivan, C. W. Gonzalez, M. Bagheri, C. P. Ryan, C. G. Payne, R. G. Sellar, Q. P. Vinckier, P. C. Adell, C. M. Kneis, J. D. Baker, D. A. McDonald, M. S. Starr, M. J. Hauge, M. Braojos Gutierrez, R. G. Lammens, E. G. Lightsey, and W. J. Ready, "Lunar Flashlight Science Ground and Flight Measurements and Operations Using a Multi-band Laser Reflectometer," Icarus, 2024, Volume 413, 1 May 2024, 116013
- [8] B. A. Cohen, "Lunar Flashlight: Assessing Eco-Friendly Propellants and Leveraging SmallSat Technology for Lunar Observations," in 6th Annual SmallSat & Space Access Summit, 2023.
- [9] M. Hauge, E. G. Lightsey, M. Starr, S. Selvamurugan, G. Jordan, J. Cancio, and C. Awald, "Operations Systems Engineering for the Lunar Flashlight Mission," in Proc. Small Satellite Conference, SSC23-WVII-02, 2023, https://digitalcommons.usu.edu/smallsat/2023/all2023/51/.
- [10] P. O. Hayne, B. A. Cohen, B. T. Greenhagen, D. A. Paige, J. M. Camacho, R. G. Sellar, and J. Reiter, "Lunar Flashlight: Illuminating the Moon's South Pole," in Proc. Lunar and Planetary Science Conference, 2016.

## References (2/3)

- [11] P. O. Hayne, B. A. Cohen, R. G. Sellar, R. Staehle, N. Toomarian, and D. A. Paige, "Lunar Flashlight: Mapping Lunar Surface Volatiles Using a CubeSat," in Proc. Annual Meeting of the Lunar Exploration Analysis Group, 2013, https://sservi.nasa.gov/wp-content/uploads/2014/04/7045.pdf.
- **[12]** G. M. Huggins, A. Talaksi, D. Andrews, E. G. Lightsey, D. Cavender, D. McQueen, H. Williams, C. Diaz, J. Baker, and M. Kowalkowski, "Development of a CubeSat-Scale Green Monopropellant Propulsion System for NASA's Lunar Flashlight Mission," in AIAA SCITECH 2021 Forum, AIAA 2021-1976, 2021, https://arc.aiaa.org/doi/abs/10. 2514/6.2021-1976.
- [13] G. Jordan and E. G. Lightsey, "Operational Development of Rotating Propulsive Maneuvers for NASA's Lunar Flashlight Mission," 2023, Master's Report, Georgia Institute of Technology. 2
- [14] C. Krause, K. Chin, M. Smart, P. Adell, T. Hurst, J. Zitkus, A. Barchowsky, J. Loveland, and J. Rapinchuk, "Lunar Flashlight Power Subsystem Architecture and Implementation," 2020, https://ntrs.nasa. gov/citations/20220002447.
- [15] P. C. Lai, D. C. Sternberg, R. J. Haw, E. D. Gustafson, P. C. Adell, and J. D. Baker, "Lunar Flashlight CubeSat GNC system development," Acta Astronautica, vol. 173, pp. 425–441, 2020, https://doi. org/10.1016/j.actaastro.2020.01.022.
- [16] L. M. Littleton and E. G. Lightsey, "Assembly, Integration, and Testing of a Green Monopropellant Propulsion System for NASA's Lunar Flashlight Mission," 2022, Master's Report, Georgia Institute of Technology.
- [17] D. McDonald and E. G. Lightsey, "Fault Management in Small Satellites," 2022, Master's Report, Georgia Institute of Technology.
- **[18]** T. McElrath, S. Collins, K. Lo, C. Smith, N. Cheek, and M. Hauge, "A Delicate Balance of Torque and Thrust: How Lunar Flashlight Used Rotating Maneuvers to Make One Thruster Do the Work of Four," in AAS/AIAA Astrodynamics Specialist Conference, 2023.
- [19] A. Rizvi, K. F. Ortega, and Y. He, "Developing Lunar Flashlight and Near-Earth Asteroid Scout Flight Software Concurrently using Open-Source F Prime Flight Software Framework," in Proc. Small Satellite Conference, SSC22-VII-03, 2022, https://digitalcommons.usu.edu/ smallsat/2022/all2022/104/.
- [20] C. Smith, N. Cheek, C. Burnside, J. Baker, P. Adell, F. Picha, M. Kowalkowski, and E. G. Lightsey, "The Journey of the Lunar Flashlight Propulsion System from Launch through End of Mission," in Proc. Small Satellite Conference, SSC23-VI-03, 2023, https: //digitalcommons.usu.edu/smallsat/2023/all2023/93/.
- [21] C. R. Smith, L. M. Littleton, E. G. Lightsey, and D. Cavender, "Assembly Integration and Test of the Lunar Flashlight Propulsion System," in AIAA SCITECH 2022 Forum, AIAA 2022-1731, 2022, <u>https://arc.aiaa.org/doi/abs/10.2514/6.2022-1731</u>.
- [22] M. Starr, "Fly Me to the Moon: A Cognitive Work Analysis of the Lunar Flashlight Operations Work Environment," 2022, Report, Georgia Institute of Technology. 3

## References (3/3)

- [23] ——, "Development of Tactical and Strategic Operations Software for NASA's Lunar Flashlight Mission," in Proc. Small Satellite Conference, SSC23-XII-05, 2023, https://digitalcommons.usu.edu/smallsat/ 2023/all2023/4/.
- [24] M. Starr, M. Hauge, and E. G. Lightsey, "Shining a Light on Student Led Mission Operations: Lessons Learned from the Lunar Flashlight Project," in AIAA SCITECH 2024 Forum, AIAA 2024-0822, 2024, https://arc.aiaa.org/doi/abs/10.2514/6.2024-0822.
- [25] M. Starr and E. G. Lightsey, "Development of Tactical and Strategic Operations Software for NASA's Lunar Flashlight Mission," 2023, Master's Report, Georgia Institute of Technology.
- [26] D. Sternberg, K. Lo, and J. Baker, "Night Sky Testing of the Lunar Flashlight Star Tracker," in 2022 IEEE Aerospace Conference (AERO), 2022, https://doi.org/10.1109/AERO53065.2022.9843416.
- [27] D. C. Sternberg, P. Lai, A. Rizvi, K. F. Ortega, K. D. Lo, P. C. Adell, and J. D. Baker, "Pre-launch testing of the Lunar Flashlight (LF) CubeSat GNC system," J Small Satellites, vol. 10, no. 1, pp. 959–981, 2021.
- [28] A. Talaksi and E. G. Lightsey, "Manufacturing, Integration, and Testing of the Green Monopropellant Propulsion System for NASA's Lunar Flashlight Mission," 2020, Master's Report, Georgia Institute of Technology.
- [29] Q. Vinckier, K. Crabtree, M. Gibson, C. Smith, U. Wehmeier, P. O. Hayne, and R. G. Sellar, "Optical and mechanical designs of the multiband SWIR receiver for the Lunar Flashlight CubeSat mission," in Proc. SPIE 10690, 106901I, 2018, <a href="https://doi.org/10.1117/12.2302914">https://doi.org/10.1117/12.2302914</a>.
- [30] Q. Vinckier, K. Crabtree, C. G. Paine, P. O. Hayne, and G. R. Sellar, "Design and characterization of a low-cost CubeSat multi-band optical receiver to map water ice on the lunar surface for the Lunar Flashlight mission," in Proc. SPIE 10403, 104030R, 2017, https://doi.org/10.1117/12.2274203.
- [31] Q. Vinckier, L. Hardy, M. Gibson, C. Smith, P. Putman, P. O. Hayne, and R. G. Sellar, "Design and Characterization of the Multi-Band SWIR Receiver for the Lunar Flashlight CubeSat Mission," Remote Sensing, vol. 11, no. 4, 2019, https://doi.org/10.3390/rs11040440. 4
- [32] Q. Vinckier, P. O. Hayne, J. M. Martinez-Camacho, C. Paine, B. A. Cohen, U. J. Wehmeier, and R. G. Sellar, "System Performance Modeling of the Lunar Flashlight CubeSat Instrument," in Proc. Lunar and Plantetary Science Conference, 2018, https://www.hou.usra.edu/meetings/ lpsc2018/pdf/1030.pdf.
- [33] U. Wehmeier, Q. Vinckier, R. G. Sellar, C. G. Paine, P. O. Hayne, M. Bagheri, M. Rais-Zadeh, S. Forouhar, J. Loveland, and J. Shelton, "The Lunar Flashlight CubeSat instrument: a compact SWIR laser reflectometer to quantify and map water ice on the surface of the moon," in Proc. SPIE 10769, 107690H, 2018, https://doi.org/10.1117/ 12.2320643.





### **Jet Propulsion Laboratory**

California Institute of Technology

Acknowledging our Sponsor: NASA's Small Spacecraft Technology Program Chris Baker and Roger Hunter

This was a JPL managed mission

## **Summary of Activities**

- Launch, Deployment & Initial Activities
- About 90 Unique Propulsion System Related Activities
  - Fuel Priming and Conditioning
  - Heater & Pump Tests
  - FSW Update & BCT Table Update Safety Net
  - 1 Thruster Spin Stabilized TCMs
  - Reverse Pump Operations
  - High Pressure Tests

#### Instrument Activities

- PCM Heater Test
- Payload Battery Charging
- 10, 30, 90s Laser Firings (14 total)
- Earth Perigee Experiment (firing at earth observatories)
- Detector Dither Activity
- Other Activities
  - High Data Rate Downlink
  - Startracker Images of Earth and Moon
  - SRP Desat (one undeployed solar panel)
  - Ongoing post-Earth perigee activities such as payload dither/detector characterization, IRIS Firecode Testing, and more.



- About 130 <u>new activities</u> conducted on the spacecraft over 24 weeks since launch
- Averaged 6 <u>new activities</u> per week until we stopped prop operations
- About 200 on-console activities in total

Project did 400+ contacts with the spacecraft from Dec. 2022 through Dec. 2023!!! (~ 12 months)

## **Summary of Anomalies**

- 29 Spacecraft Anomalies & 20 MOC Anomalies
  - All resolved or worked around except PROP
- Notable/Persistent Anomalies
  - Propulsion system issues caused by FOD
  - DSS 56: Unexplained issues binding to the station, then unexplained resolution a couple months later
  - Uplink issues
    - SLE Proxy
    - Chunk corruption
  - Eng Partition Corruption
  - Fracture of inlet tube during last attempt to correct trajectory

