

PURDUE UNIVERSITY	Technological Gaps in Cryogenic Literature													
	Cryogenic Database													
		Cryo	Transient (Quenching)	Steady-state Heating										
		1g data	Abundant	Scarce										
		μg data	Few											
		Correlation	Few	None										
		Uncertainty	High	Low										
What is missing?														
	1. No <u>reduced/partial gravity data for steady state</u> cryogenic flow boiling													
	2. No <u>reliable HTC/CHF correlations</u> for cryogenic two-phase transfer line													
	Purd	lue University B	oiling and Two-Ph	ase Flow Laborate	ory (PU-BTPFL)									

	March 2024 Flight Experiments															
	Flight Test Matrix															
M	TEST MATRIX		Flight day 1 (15 – 15)			Flight day 2 (10 - 10 - 10)			Flight day 3			Flight day 4				
(Mar	h Flight)	Case1	Case2	Case3	Case4	Case5	Case6	Case7	Case8	Case9	Case10	Case11	Case12	Case13	Case14	Case15
# of parabo	a [-]	8	4	7	3	6	7	5	4	5	3	4	5	4	3	3
Р	[psi]	80	77	80	84	70	70	70	100	100	106	106	80	80	80	90
gravity	[-]	Martian	Martian	Lunar	Lunar	Martian	Lunar	μg	μg	μg	μg	μg	μg	μg	μg	μg
LFR	[gpm]	0.7	1.0	0.7	1.0	0.8	0.8	0.8	1.6	1.4	0.6	0.8	1.7	1.5	1.0	0.8
G	[kg/m²s]	600	792	587	879	660	653	660	1338	1110	485	650	1411	1209	806	650
ΔTsc	[K]	3	2.6	3.5	4.3	2.7	3.2	2	3.7	4.2	4.1	4.1	3.6	3.6	3.6	4.0
CHF	[-]	o	o	Δ	Δ	o	0	х	o	o	o	х	o	x	x	x
	ery suc utstand chieved en full b ix LN2 M our LN2 otal of 7 cquired	cessful, ing teal good c oiling c lartian/I Microg 14 (51x flow vi	nearly m, inclu lata acc urves a Lunar C ravity C 14) stea sualiza	flawles uding b quisitio acquire CHF dat CHF dat CHF dat ady-stat	ss camp oth doo n desp d for te a point a point te micr Microo	ctoral c ite unex n differ s acqui s acqui ogravity	andidat xpected rent ma ired ired y/Lunat and bot	es and I situati ss velo /Martia th Luna	underg ons cities n HTC r and M	jraduat data po lartian	e stude sints ac	ent tean quired ss	ns			

