

ACCESS

NASA Space Technology Research Institute

lain D. Boyd, Director

What is an Entry System?

- An Entry System comprises all outer surfaces of a vehicle during its initial hypersonic interaction with an atmosphere and provides
 - Structural integrity against aerodynamic loads
 - Thermal protection against heating loads

Entry System design considerations

- Hypersonic flow: chemistry, radiation, turbulence
- Material response: conduction, radiation, surface chemistry (ablation), in-depth chemistry (pyrolysis)
- Structural response: fracture, failure
- Approach: minimize mass and provide margin
- Industry uses a combination of analysis, testing, and legacy experience
- NASA usually performs the high-fidelity analysis of flow and material response processes

ACCESS: Vision & Objectives

Vision Statement

Revolutionize the analysis and design of planetary entry systems through development of a fully integrated, interdisciplinary, simulation capability employing high fidelity, validated physics models, including uncertainty quantification (UQ) and reliability, that is enabled by high performance computing

Primary Research Objectives

- 1. Integrated entry system analysis framework
- 2. UQ and reliability for complex entry systems
- 3. High fidelity models for flow physics, material and structural response incorporating UQ
- 4. Execution on peta/exa-scale architectures

Institute Structure

NASA TPOC = Dr. Eric Stern (NASA-ARC)

Institute Members

University of Colorado (CU)

- Iain Boyd (Director, Tasks 1, 4)
- Alireza Doostan (Task 4 Lead)
- Dave Marshall (Task 3)
- Tim Minton (Task 1)
- Robyn Macdonald (Task 1)

University of Illinois (UIUC)

- Marco Panesi (Task 1 Lead, Task 4)
- Harley Johnson (Task 3)
- Francisco Panerai (Tasks 1, 3)
- Kelly Stephani (Tasks 1, 3)

University of New Mexico (UNM)

- Hua Guo (Task 1)

University of Maryland (UMD)

- Christoph Brehm (Task 1)

University of Kentucky (UKY)

- Alexandre Martin (Task 3 Lead, Task 4)
- Matthew Beck (Task 3)
- Hailong Chen (Task 3)
- Jack Maddox (Task 3)
- Savio Poovathingal (Task 3)

University of Minnesota (UMN)

- Graham Candler (Task 2 Lead, Task 4)
- Bernardo Cockburn (Task 2)
- Joseph Nichols (Task 2)
- Tom Schwartzentruber (Task 1)

*University of Oxford

*Unfunded participants

- Matt McGilvray (Task 1)

*National Research Center - Bari

- Vincenzo Laporta (Task 1)

*Instituto Superior Tecnico - Lisbon

- Mario Lino da Silva (Task 1)

Exemplar Project-1: Dragonfly (Years 1-2.5)

- Entry Mission
 - Deliver large rotorcraft to Titan surface
- Entry Environment:
 - 7.3 km/s, relatively long entry
 - Titan atmosphere: 98% N₂, 2% CH₄
- Entry System
 - Heatshield TPS = PICA-D with RTV
 - Backshell TPS = SLA-561V
- Key technical considerations
 - CN radiation up to 50% of total heating
 - Heat soak due to long entry
 - Lack of oxygen likely excludes ablation
 - Effects of pyrolysis products
 - Instrumentation package (DrEAM)
 - Turbulence due to surface roughness

Dragonfly: DrEAM Instrumentation

- C1,C2,C3 each have two narrow band radiometers (for CN violet and CN red) and total heat flux
- C3 close to the aft shoulder
- C2 mid-point forward conic section
- C1 mid-point aft conic section
- CN Violet narrow band radiometer: 320 – 420 nm
- CN Red narrow band radiometer: 600 – 1800 nm

Focus Areas During Dragonfly Project (Yrs 1-2.5)

- 1. Post-flight reconstruction of CH₄ atmospheric content [Task 1.1]
- Sensitivity analysis, computational chemistry, shock tube experiments

2. Assess influence of nitridation and pyrolysis products [Task 1.2]

- Compare finite rate surface chemistry model to B' tables
- Measure pyrolysis products, propagate from surface in CFD
- 3. High fidelity modeling of turbulence from rough surface [Task 1.3]
- Apply WM-LES and DNS, compare to RANS

4. Improve SLA models to reduce backshell heating margin [Task 3.2]

- Generate radiative properties (scattering, absorption), evaluate influence for Dragonfly radiation environment
- 5. Reduce parameter variances for QMU [Task 4.2]
- Sensitivity analysis to identify dominant sources of uncertainty and utilizing targeted experiments and ab initio calculations

All Focus Areas require continuous progress in Task 2

Exemplar Project 2: Earth Entry System (Years 2.5-5)

- Entry Mission: Mars Sample Return
 - Return soil samples from Mars
- Entry Environment:
 - 14 km/s, fastest ever man-made entry
- Entry System: Earth Entry System (EES)
 - Heatshield TPS = 3MDCP
 - Backshell = Paneled PICA
 - Required Reliability = 0.9999999
- Key technical considerations
 - Ionization and radiation
 - Micro-meteoroid damage
 - UQ requires 100s of ISF simulations (flow+radiation+material+structure)

1.3 m diameter, 60° sphere-cone

63 – 85 kg depending on TPS choice

Institute Structure

Tightly Coupled Multidisciplinary Analysis Capability (Task 2)

- Lead: Graham Candler, UMN
- **Objective:** Implement fully coupled flowradiation-surface-material-structural models for entry system analysis in an Integrated Simulation Framework (ISF)
- Couple and integrate high-fidelity physics models, UQ methods, and novel scalable algorithms for emerging HPC systems
- Four sub-tasks:
 - ISF Development
 - Coupling approaches
 - Peta/exa-scale computing capabilities
 - Innovative and non-traditional methods

Roadmap for ISF Development

Roadmap for ISF Development: Demonstrations

Demonstration	Project	Capability	Target Date
D1	Dragonfly	Coupled Flow (US3D) + Blowing	June 2023
D2	Dragonfly	Coupled Flow + Material (KATS)	July 2023
D3	Dragonfly	Coupled Flow + Material + Blowing	August 2023
D4	Dragonfly	Coupled Flow + Radiation (MURP)	March 2024
D5	EES	Coupled Flow + Radiation + Blowing	June 2024
D6	EES	Coupled Flow + Radiation + Blowing + Material	June 2025
D7	EES	Coupled Flow + Radiation + Blowing + Material + UQ	September 2026

Coupled Flow + Radiation

Radiative transport over Dragonfly capsule from CN Violet band (B-X) 400-430 nm

Uncertainty Quantification & Reliability (Task 4)

- Lead: Alireza Doostan, CU
- Objective: Propagation of uncertainty through model reduction approaches first at the component-level, and then at the system level
- Component-level UQ enables exploration of the uncertainty space associated with smaller sets of physics models and identify key parameters dominating the system response
- UQ of smaller sets of physics models used as a prerequisite for overall system model UQ
- Three sub-tasks:
 - UQ Development
 - Sensitivity Analysis
 - System Reliability

Sensitivity Analysis

Sensitivity Analysis: 1D shock flow simulation of Titan chemistry

Towards Bayesian Calibration: Titan chemistry UQ using NASA EAST spectra

Kinetic Rate and Physical Process Modeling (Task 1)

- Lead: Marco Panesi, UIUC
- **Objective:** Provide accurate models of all gas-phase and gas-surface processes with quantified uncertainty
- Three sub-tasks:
 - Gas-Phase Kinetics and Radiation
 - Gas-Surface Interaction
 - Turbulence Modeling
- Models for the atmospheres of Titan, Mars, and Earth, expanded by the products of material ablation
- Research priorities guided by sensitivity analysis (Task 4)

Gas Phase Chemistry and Radiation

- **Dragonfly:** Construction of potential energy surfaces (PES) and use in quasi-classical trajectory (QCT) analysis for interactions in Titan atmosphere (N₂, CH₄)
 - Identified through sensitivity analysis, e.g., CN formation important for radiation
 - Rates of chemical reactions for flow analysis
- Construction of a suite of reduced order and highfidelity flow models to test chemistry and radiation (also used for UQ in Task 4)
- Experimental data sets from several facilities
 - Inductively Coupled Plasma (UIUC)
 - Shock tubes (Oxford, IST)
 - NASA EAST facility
- Models with quantified uncertainty to be implemented in the Integrated Simulation Framework

 $C + N_2 \rightarrow CN + N$

High Fidelity Modeling of TPS Features, Damage & Failure (Task 3)

- Lead: Alexandre Martin, UKY
- **Objective:** Provide accurate models of all material and structural response processes including features, defects, and quantified uncertainty
- Modeling and experiments at multiple scales: fiber, meso, macro
- Three sub-tasks across Macro-, Meso-, and Fiber- scales

Macroscale Modeling Material Response

Stochastic macroscale modeling of heat shields through the development of a Material Response framework (KATS)

(b) Computational model of shear experiment

- Crack modeling in KATS
 - Modeling of an experiment performed by CU (D. Marshall)
 - Highlights the variability of properties based on fiber density
 - The new model captures fracturing effect seen in the experiment

Educational Activities

- Education and training opportunities
 - 27 graduate students and 10 research staff directly supported
 - Graduate Hypersonics Certificates
 - University of Colorado (23 currently enrolled, 23 awarded)
 - University of Illinois (first year)
- ACCESS Seminar Series:
 - "Challenges in Hypersonic Entry Systems for Space Exploration"
 - Initiated in Fall 2022, nine seminars so far
 - Speakers: Government, Industry, Academia
 - Made available to all ACCESS participants and NASA
 - Strong attendance (average = 70, max = 120)

Summary

- ACCESS involves a comprehensive research team addressing the NSTRI Entry System objectives
 - Six U.S. universities, 3 international collaborators
- ACCESS approach involves
 - High fidelity modeling of all relevant flow physics, material and structural response processes, with uncertainty quantified using detailed comparisons of analysis and experiments
 - Implementation of all models in the Integrated Simulation Framework executed on exa/peta-scale hardware to enable reliability estimation
 - Use of two exemplar projects to successively advance capabilities
- Successful completion of the ISF will enable the comprehensive and affordable analysis of Entry Systems with quantified uncertainty and reliability estimates for adoption by NASA and industry

Backup

NSTRI FY20 Entry System Topic

- NASA is facing new challenges in certifying Entry Systems of some future exploration missions
- Example: Mars Sample Return
 - Send rover to surface of Mars and collect soil samples
 - Return samples to Earth for study
 - Entry system for Earth required to have reliability of 0.999999
 - Planetary contamination concern if vehicle breaks up
- NASA and contractors have no way today to certify to that level
- NSTRI proposal requirements
 - Advance the state-of-the-art in modeling of all flow, materials, and structures phenomena in the context of uncertainty quantification (UQ)
 - Integrate all models including UQ into a single computational simulation capability for evaluation of entry system reliability

Gas-Surface Interaction

- Dragonfly: Construction of a model for the interaction of the Titan atmosphere (N₂, CH₄) with heatshield material (PICA: a pyrolyzing light-weight ablator)
 - No ablation expected in oxygen-free atmosphere
 - Primary focus is N_2 interaction with carbon surface
 - Ab initio computational simulations
- Pyrolysis chemistry
 - Interaction of pyrolysis products (CO, CO₂, H_2O , etc.) with N_2 , CH_4
 - Pyrolysis chemistry internal to PICA
- Experimental data sets from several facilities
 - Inductively Coupled Plasma (UIUC)
 - Flow reactor (CU)
 - Molecular beams (CU)
- Models with quantified uncertainty to be implemented in the Integrated Simulation Framework

Turbulence and Transition

- Hypersonic turbulent boundary layers can have heating rates that are factors of 3-6 higher than laminar flows, so transition prediction is particularly important
 - Complicated by chemistry of different atmospheres, blowing of ablation products, and surface roughness

Analysis of experiments from NASA Langley Mach 6 Tunnel of hemisphere with sand grain roughness (Hollis, 2017)

High Fidelity Modeling of TPS: Dragonfly Approach

- Material response modeling
 - Non-oxidizing environment; first N₂, then N₂-CH₄
 - Focus on FiberForm (before PICA)
- Experimental characterization of RTV gap filler for input to modeling
 - Micro-CT, TGA
- Experiments focus on non-oxidizing environment:
 - Flow tube
 - Effective conductivity under load
 - Nitridation of microstructure
- Pyrolysis gas of PICA
 - Chemistry
 - Transport properties
 - Volumetric oxidation

- Backshell SLA-561 and SLA-220
 - Very different from PICA
 - No surface recession expected (relatively mild heat flux)
 - 90% of heating from radiation
 - Data obtained on micro-structure, conductivity, radiative properties
 - Objective is to improve upon current models

Mesoscale modeling

Structural Properties (experiment)

Characterize material structures and constitutive properties to inform and validate mesoscale models of ablation and spalling in environments relevant to DragonFly

3-D maps of local fiber packing density (volume fraction of fibers) within a 2x2x2mm cube in the interior of the cylindrical specimen

Roadmap for UQ & Reliability (Task 4)

Roadmap for Flow Physics (Task 1)

COMPUTATION

EM SIMULATIC

Roadmap for Materials and Structures (Task 3)

