Modeling the Schott ELZM Thermal Soak Test

Thomas Brooks NASA's Marshall Space Flight Center Thomas.Brooks@NASA.gov (256) 544 - 5596

Opto-thermal test of Zerodur Mirror

Surface Figure Error (SFE) Sources

- Error due to Thermal Gradients
 - Thermal gradients cause mirror to bend
 - Caused by non-zero CTE and gradients
- Error due to Mount Effects
 - Mirror mount not athermalized, but very compliant flexures
 - Hexapod legs grow and bend mirror
- Error due to CTE inhomogeneity
 - CTE gradients + isothermal temperature change bend the mirror
- Instrumentation Error

SFE due to Mount

- RMS SFE = 0.81nm
- Likely sources of error in analysis:
 - Incorrect material properties

The test was sub-aperture and only the area enclosed in the circle was measured

SigFit 21.10.2016, 14:40:33, DISLIN 10.6 Mount-Effect

SFE due to Thermal Gradients

- RMS SFE = 1.28nm
- Likely sources of error in analysis:
 - Different temperature distribution (~2K ΔT)
 - CTE(250K) of this
 Zerodur mirror
 (20ppb/K)

Test Measured Data at 250K

09/16/16 08:10:57

M1- Top Hole	249.9				
M2 - North Hole	251.9				
M3 - South Hole	250.0				
M4 - 12:00	250.0				
M5 - 10:00	250.6				
M6 - 8:00	250.0				
M7 - 6:00	250.5				
M8 - 4:00	250.2				
M9 - 2:00	250.3				
M10- Top Edge	250.2				
M11 - 8:00 Edge	249.8				
M12 - 4:00 Edge	249.7				
M13 - Top Front	250.2				
M14 - 4:00 Front	250.0				
M33 - 8:00 (w/M6)	250.0				
M34 - 8:00 (w/M11)	250.2				
M35 - 8:00 (w/M2)	250.2				
M36 - 12:00 (w/M4)	249.8				
M37 - 4:00 (w/M8)	250.0				
M38 - 5:00	250.2				
M39 - 7:00	250.3				
30 - South Pad	250.5				
31 - Bottom Pad	250.6				
32 - North Pad	250.5				
15 - 12:00 Ring	251.4				
16 - Delta_3	250.5				
17 - Delta_2	250.5				
18 - Top Bracket	250.6				
19 - South Bracket	250.8				
20 - North Bracket	250.5				
21 - Strut R3	250.4				
22 - Strut L2	250.4				
23 - Strut L3	250.5				
24 - Strut L1	250.2				
25 - Strut R2	250.6				
26 - Strut R1	250.3				
27 - South Mount	250.7				
28 - Bottom Mount	250.7				
29 - North Mount	250.7				
40 - Delta_1	250.7				
(Kelvin)					

*Likely anomalous measurement ignored

SFE due to CTE Inhomogeneity

From the Schott Zerodur July 2011 Katalog [sic]

SFE due to CTE Inhomogeneity

- RMS SFE = 21.4 nm
- Likely sources of error in analysis:
 - Incorrect "randomly generated" CTE inhomogeneity shape
 - Incorrect CTE
 inhomogeneity P-V
 (assumed 10ppb/K)

SFE Budget

CTE Inhomogeneity + Bulk Temperature Change

Mirror Temperature Gradient + CTE

Mount Stiffness and CTE + Bulk Temperature Change

Total SFE	Inhomogeneity SFE	Gradient SFE	Mount SFE
(nm)	(nm)	(nm)	(nm)
21.45	21.4	1.28	0.81

Disclaimer: some material properties were unknown and assumed; large uncertainty in epoxy properties.

294K to 250K

A Prior Analysis Results

Thermal Gradients* (1.28 nm RMS)

Mount Effects (0.81 nm RMS)

Inhomogeneity** (21.4 nm RMS)

*Exact temperature distribution could not be known in advance. CTE(T) was not known in advance (0.02ppm/K assumed at all temperatures)

**CTE Inhomogeneity was not known a priori. A random CTE map was generated that had a 10ppb/K peak to valley.

Test Results

Conclusion

Analysis can match measured SFE by adjusting the assumed CTE inhomogeneity to a new CTE inhomogeneity that is roughly 5ppb/K peak to valley. This is within the range of measured Zerodur CTE inhomogeneity peak to valleys.

New Zerodur Homogeneity

	Dimension	Number of Samples	CTE (0°; 50°) absolute value [ppb / K]		CTE (0°; 50°) homogeneity [ppb / K]	
Year	[mm]	#	Specification	Achieved	Specification	Achieved
2003	4100 x 171	18	+/- 50	66	20	18 ¹
2005	3610 x 370	12	+/- 100	80	30	25^{1}
2009	3700 x 163	36	+/- 150	54	40	9
2010	3400 x 180	12	+/- 100	42	30	5
2012	4250 x 350	16	+/- 30	60	40	5
2014	4250 x 350	16	+/- 30	0	40	3
2016	4060 x 103	16	+/- 50	36	20	7
2016 ²	4000 x 100	12	+/- 150	15	20	4

First two were measured with the old dilatometer metrology. All others measured with the new dilatometer metrology.

Ralf Jedamzik, et al.

" Effects of thermal inhomogeneity on 4m class mirror substrates ", *Proc. SPIE* 9912, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, 99120Z (July 22, 2016); doi:10.1117/12.2234287; <u>http://dx.doi.org/10.1117/12.2234287</u>

Generated Multiple Homogeneities

All maps are 5ppb/K P-V CTE Inhomogeneity

13.1 nm RMS SFE

8.7 nm RMS SFE

9.5 nm RMS SFE

New 294K to 250K

New Homogeneity* (9.55 nm RMS)

*CTE Inhomogeneities randomly generated until one matched. P-V homogeneity changed to 5 ppb/K.

Measured SFE (9.4 nm RMS)

Conclusion

PV: 194.1 nm

RMS: 9.426 nm Astig: 17.67 nm, -1.308E+06

- A 5 ppb/K peak-to-valley inhomogeneity produced 9.55nm RMS of SFE and a root-sum-squared SFE estimate of 9.6nm RMS.
- Zerodur boules have been measured to have a 5 ppb/K peak-to-valley CTE inhomogeneity, therefore, 5ppb/K peak-to-valley inhomogeneity is reasonable.
- Further investigation will match test results to an even greater extend.

Acknowledgements

Marshall Space Flight Center (MSFC)

- Ron Eng and the XRCF team for setting up and performing the test
- Phil Stahl for helping design the test and interpret results

University of New Mexico (UNM)

• Tony Hull for helping design the test and interpret results

Schott

Provided the mirror

Arizona Optical Systems (AOS)

• Designed the support structure

Questions or Comments?

NAS

