Starting Points for Designing Freeform Four-Mirror Telescopes

Jonathan Papa Jannick Rolland (PI) Joseph Howard (NASA mentor)

Project Overview

- Central Objective: Survey of the four-mirror freeform solution space that considers geometries that could be advantageous for system constraints, such as mass, volume, stray light control, or radiation shielding.
- Methods/Techniques: Use analytically designed starting points before adding freeform terms to explore different design forms.

Parts of the Design Process

Considered Starting Points So Far (This is not an exhaustive list)

Method	Corrected through 3 rd Order	Stigmatic Imaging at Every Surface (One Field Point)	Unobscured
Rotationally-Symmetric Rakich All-Spherical Maps	•		
Rotationally-Symmetric All- Conic Maps	•	●	
Off-Axis Conic Layout Tool		●	●
Off-Axis Conics from Aberration Coefficients for Plane-Symmetry	•	•	•

Starting Points

Method	Corrected through 3 rd Order	Stigmatic Imaging at Every Surface (One Field Point)	Unobscured
Rotationally-Symmetric Rakich All-Spherical Maps	•		
Rotationally-Symmetric All- Conic Maps	•	•	
Off-Axis Conic Layout Tool		●	●
Off-Axis Conics from Aberration Coefficients for Plane-Symmetry	•	•	•

Rotationally-Symmetric Rakich All-Spherical Maps

$$W_{spherical} = -\frac{1}{8} n^{2} i_{a}^{2} y_{a} \left(\frac{u_{a}'}{n'} - \frac{u_{a}}{n}\right)$$

Total Spherical Aberration = $\sum_{i} W_{i}$
Total Coma $\propto \sum_{i} x_{i} W_{i}$
Total Astigmatism $\propto \sum_{i} x_{i}^{2} W_{i}$

To get an anastigmat solution, the following conditions must be satisfied:

$$W_1 + W_2 + W_3 + W_4 = 0$$

$$W_1 x_1 + W_2 x_2 + W_3 x_3 + W_4 x_4 = 0$$

$$W_1 x_1^2 + W_2 x_2^2 + W_3 x_3^2 + W_4 x_4^2 = 0$$

Rakich solves for the curvature of mirrors 3 and 4; and the thicknesses after mirrors 2, 3, and 4; as a function of the curvature of mirror 2, the thickness after mirror 1, and stop location x1.

Rakich, Opt. Eng. 46(10), 2007

Rotationally-Symmetric Rakich All-Spherical Maps

Matlab Implementation:

Parameters of the three dimensional solution space are t1 (thickness after mirror 1), c2 (curvature of mirror 2), and x_1 (represented as time axis of video, corresponds to stop position).

Interface = Flat Field Solutions

White: >0 PZT; Black: <0 PZT; Gray: No Viable solution

Video of Solution Space

Rotationally-Symmetric Rakich All-Spherical Maps

- Pick a solution from the solution map by filtering for solutions with desirable properties; such as adequate mirror separations that allow for unobscuration by using smaller tilts, or internal images, etc.
- Unobscure by tilting the mirrors while adding freeform terms (i.e. Zernikes) through optimization.

UNIVERSITY of ROCHESTER Tech Days Nov. 2, 2016

10

Starting Points

Method	Corrected through 3 rd Order	Stigmatic Imaging at Every Surface (One Field Point)	Unobscured
Rotationally-Symmetric Rakich All-Spherical Maps	●		
Rotationally-Symmetric All- Conic Maps	•	•	
Off-Axis Conic Layout Tool		●	●
Off-Axis Conics from Aberration Coefficients for Plane-Symmetry	•	•	•

Rotationally-Symmetric All-Conic Maps for Afocal Three Mirror Systems

- Grayscale represents magnification.
- Focal length of primary set to 1.
- Assuming positive primary.

Third Order Analysis

Afocal TMA

P	osition 1,	Wavelength	= 587.6	NM	
SA	TCO	TAS	SAS	PTB	DST
-0.247594	1.812133	-4.353068	-1.405749	0.067910	3.429543
0.247594	-1.423124	2.726615	0.908872		-1.741340
0.025215	-0.192614	0.326974	0.00000	-0.163487	0.00000
-0.025215	0.00000	0.00000	0.00000		0.00000
-0.044840	0.314107	-0.637873	-0.148907	0.095577	0.347702
0.044840	-0.510502	1.937353	0.645784		-2.450749
0.00000	0.000000	0.00000	0.000000	0.000000	-0.414845
	P SA -0.247594 0.247594 0.025215 -0.025215 -0.044840 0.044840 0.000000	Position 1, SA TCO -0.247594 1.812133 0.247594 -1.423124 0.025215 -0.192614 -0.025215 0.000000 -0.044840 0.314107 0.044840 -0.510502 0.000000 0.000000	Position 1, WavelengthSATCOTAS-0.2475941.812133-4.3530680.247594-1.4231242.7266150.025215-0.1926140.326974-0.0252150.0000000.000000-0.0448400.314107-0.6378730.044840-0.5105021.9373530.0000000.0000000.000000	Position 1, Wavelength = 587.6 SATCOTASSAS -0.247594 1.812133 -4.353068 -1.405749 0.247594 -1.423124 2.726615 0.908872 0.025215 -0.192614 0.326974 0.000000 -0.025215 0.000000 0.000000 0.000000 -0.044840 0.314107 -0.637873 -0.148907 0.044840 -0.510502 1.937353 0.645784	Position 1, Wavelength =587.6 NMSATCOTASSASPTB-0.2475941.812133-4.353068-1.4057490.0679100.247594-1.4231242.7266150.9088720.025215-0.1926140.3269740.000000-0.163487-0.0252150.0000000.0000000.000000-0.0448400.314107-0.637873-0.1489070.0955770.044840-0.5105021.9373530.6457840.0000000.0000000.0000000.000000

Starting Points

Method	Corrected through 3 rd Order	Stigmatic Imaging at Every Surface (One Field Point)	Unobscured
Rotationally-Symmetric Rakich All-Spherical Maps	●		
Rotationally-Symmetric All- Conic Maps	●	●	
Off-Axis Conic Layout Tool		●	●
Off-Axis Conics from Aberration Coefficients for Plane-Symmetry	•	●	●

Off-Axis Conic Layout Tool

- Force stigmatic imaging for the field point along optical axis ray (OAR)/base ray, such that all intermediate image points are stigmatic, allow "pivoting" about the foci of the conics. System is like a linkage of off-axis conic mirrors.
- When pivoting, the basal field point remains stigmatic.
- This method allows for unobscured starting points.

Two Mirror Pivoting Conics

 ∞

Four Mirror Pivoting Conics

MELIORA T

Video of Off-Axis Conic Layout Tool

Starting Points

Method	Corrected through 3 rd Order	Stigmatic Imaging at Every Surface (One Field Point)	Unobscured
Rotationally-Symmetric Rakich All-Spherical Maps	●		
Rotationally-Symmetric All- Conic Maps	●	●	
Off-Axis Conic Layout Tool		●	●
Off-Axis Conics from Aberration Coefficients for Plane-Symmetry	•	•	•

MELIORA E

Off-Axis Conics from Aberration Coefficients for Plane-Symmetry

- All conic foci are constrained to a plane.
- Sasian developed aberration coefficients for planesymmetric systems that depend on paraxial raytrace quantities to third order. He demonstrated the coefficients on a two mirror system pivoting about shared conic focus.
- This method will utilize the solutions from the "Rotationally-Symmetric All-Conic Maps" method, and take it further by unobscuring those solutions (like in the "Off-Axis Conic Layout Tool", but this method is corrected through 3rd order instead of just at one field point).

Sasian, Opt. Eng. 33(6), 1994

Aberration Coefficients Before and After Tilting/Unobscuring

In waves zero-to-peak at 587.5618 nm; before tilting

Aberrations	Surface 1	Surface 2	Surface 3	Sum
Linear Coma	-5.57	2.76	2.81	0.00
Field Lin. Field Asym. Ast.	0.00	0.00	0.00	0.00
Quadratic Astigmatism	1.46	1.77	-3.23	0.00
Field Curvature	0.00	2.64	-2.64	0.00

Tilt mirrors to unobscure while canceling introduced linear astigmatism, as we tilt.

		Surface	1 Surface	2 Surfac	e 3	
	Tilt	10)° -1	LO°	10°	
Aberr	ations	Surface 1	Surface 2	Surface 3	Sun	1
Linear	Coma	-5.49	2.76	2.85		0.1
Field 1	Lin. Field Asym. Ast.	38.69	-11.20	-27.49		0.0
Quad	ratic Astigmatism	1.46	1.79	-3.31		-0.0
Field	Curvature	0.01	2.62	-2.67		-0.0

3

Mellora T

UNIVERSITY of ROCHESTER

<u>Tech</u> Days Nov. 2, 2016

23

Conclusion

- Several analytical starting point design methods are being developed to facilitate a survey of the four-mirror freeform solution space.
- A combination of these methods can allow for unobscured starting points that are corrected for third order image degrading aberrations.

This work was supported by a NASA Space Technology Research Fellowship

Questions?

