Starting Points for Designing Freeform Four-Mirror Telescopes

Jonathan Papa Jannick Rolland (PI) Joseph Howard (NASA mentor)

Project Overview

- Central Objective: Survey of the four-mirror freeform solution space that considers geometries that could be advantageous for system constraints, such as mass, volume, stray light control, or radiation shielding.
- Methods/Techniques: Use analytically designed starting points before adding freeform terms to explore different design forms.

Parts of the Design Process

Considered Starting Points So Far (This is not an exhaustive list)

Method	Corrected through 3rd Order	Stigmatic Imaging at Every Surface (One Field Point)	Unobscured
Rotationally-Symmetric Rakich All-Spherical Maps	\bullet		
Rotationally-Symmetric All- Conic Maps	\bullet	\bullet	\bullet
Off-Axis Conic Layout Tool		\bullet	\bullet
Off-Axis Conics from Aberration Coefficients for Plane-Symmetry	\bullet	\bullet	\bullet

Starting Points

Method	Corrected through 3 'd Order	Stigmatic Imaging at Every Surface (One Field Point)	Unobscured
Rotationally-Symmetric Rakich All-Spherical Maps	\bullet		
Rotationally-Symmetric All- Conic Maps	\bullet	\bullet	
Off-Axis Conic Layout Tool		\bullet	\bullet
Off-Axis Conics from Aberration Coefficients for Plane-Symmetry	\bullet	\bullet	\bullet

Rotationally-Symmetric Rakich AllSpherical Maps

$$
\begin{gathered}
W_{\text {spherical }}=-\frac{1}{8} n^{2} i_{a}^{2} y_{a}\left(\frac{u_{a}^{\prime}}{n^{\prime}}-\frac{u_{a}}{n}\right) \\
\text { Total Spherical Aberration }=\sum_{i} W_{i} \\
\text { Total Coma } \propto \sum_{i} x_{i} W_{i} \\
\text { Total Astigmatism } \propto \sum_{i} x_{i}^{2} W_{i}
\end{gathered}
$$

To get an anastigmat solution, the following conditions must be satisfied:

$$
\begin{gathered}
W_{1}+W_{2}+W_{3}+W_{4}=0 \\
W_{1} x_{1}+W_{2} x_{2}+W_{3} x_{3}+W_{4} x_{4}=0 \\
W_{1} x_{1}^{2}+W_{2} x_{2}{ }^{2}+W_{3} x_{3}{ }^{2}+W_{4} x_{4}{ }^{2}=0
\end{gathered}
$$

Rakich solves for the curvature of mirrors 3 and 4 ; and the thicknesses after mirrors 2, 3, and 4 ; as a function of the curvature of mirror 2 , the thickness after mirror 1 , and stop location $\times 1$.

Rakich, Opt. Eng. 46(10), 2007

Rotationally-Symmetric Rakich AllSpherical Maps

Matlab Implementation:
Parameters of the three dimensional solution space are ti (thickness after mirror 1), cZ (curvature of mirror 2), and x_{1} (represented as time axis of video, corresponds to stop position).

Interface = Flat Field Solutions

White: >0 PZT; Black: <0 PZT; Gray: No Viable solution

Video of Solution Space

Rotationally-Symmetric Rakich AllSpherical Maps

- Pick a solution from the solution map by filtering for solutions with desirable properties; such as adequate mirror separations that allow for unobscuration by using smaller tilts, or internal images, etc.
- Unobscure by tilting the mirrors while adding freeform terms (i.e. Zernikes) through optimization.

Validation of Solution Maps

Parameters:
Cubic 1: solution 2
Cubic 2: solution 3
x1=2
$\mathrm{t} 1=1.245 \mathrm{~m}$

Starting Points

Method	Corrected through 3rd Order	Stigmatic Imaging at Every Surface (One Field Point)	Unobscured
Rotationally-Symmetric Rakich All-Spherical Maps	\bullet		
Rotationally-Symmetric All- Conic Maps	\bullet	\bullet	
Off-Axis Conic Layout Tool			
Off-Axis Conics from Aberration Coefficients for Plane-Symmetry	\bullet	\bullet	\bullet

Rotationally-Symmetric All-Conic Maps for Afocal Three Mirror Systems

- Grayscale represents magnification.
- Focal length of primary set to 1.
- Assuming positive primary.

Selected 2x Solution from Root 1 Map; t1=t2
 Object and Image at Infinity

M2

Entrance Pupil Diameter 200mm 1.5° Circular Full Field of View

M1\&M2
104.17 MM

Third Order Analysis

Afocal TMA Position 1, Wavelength						
	SA	TCO	TAS	SAS	PTB	DST
1	-0.247594	1.812133	-4.353068	-1.405749	0.067910	3.429543
	0.247594	-1.423124	2.726615	0.908872		-1.741340
STO	0.025215	-0.192614	0.326974	0.000000	-0.163487	0.000000
	-0.025215	0.000000	0.000000	0.000000		0.000000
3	-0.044840	0.314107	-0.637873	-0.148907	0.095577	0.347702
	0.044840	-0.510502	1.937353	0.645784		-2.450749
SUM	0.000000	0.000000	0.000000	0.000000	0.000000	-0.414845

Starting Points

Method	Corrected through 3rd Order	Stigmatic Imaging at Every Surface (One Field Point)	Unobscured
Rotationally-Symmetric Rakich All-Spherical Maps	\bullet		
Rotationally-Symmetric All- Conic Maps	\bullet	\bullet	
Off-Axis Conic Layout Tool			\bullet
Off-Axis Conics from Aberration Coefficients for Plane-Symmetry	\bullet		\bullet

Off-Axis Conic Layout Tool

- Force stigmatic imaging for the field point along optical axis ray (OAR)/base ray, such that all intermediate image points are stigmatic, allow "pivoting" about the foci of the conics. System is like a linkage of off-axis conic mirrors.
- When pivoting, the basal field point remains stigmatic.
- This method allows for unobscured starting points.

Two Mirror Pivoting Conics

Four Mirror Pivoting Conics

UNIVERSITY of ROCHESTER
Tech Days Nov. 2, 2016

Video of Off-Axis Conic Layout Tool

File Edit View Options Tools Window Help

Starting Points

Method	Corrected through 3rd Order	Stigmatic Imaging at Every Surface (One Field Point)	Unobscured
Rotationally-Symmetric Rakich All-Spherical Maps	\bullet		
Rotationally-Symmetric All- Conic Maps	\bullet	\bullet	\bullet
Off-Axis Conic Layout Tool		\bullet	\bullet
Off-Axis Conics from Aberration Coefficients for Plane-Symmetry	\bullet	\bullet	\bullet

Off-Axis Conics from Aberration Coefficients for Plane-Symmetry

- All conic foci are constrained to a plane.
- Sasian developed aberration coefficients for planesymmetric systems that depend on paraxial raytrace quantities to third order. He demonstrated the coefficients on a two mirror system pivoting about shared conic focus.
- This method will utilize the solutions from the "Rotationally-Symmetric All-Conic Maps" method, and take it further by unobscuring those solutions (like in the "Off-Axis Conic Layout Tool", but this method is corrected through $3^{\text {rd }}$ order instead of just at one field point).

Aberration Coefficients Before and After Tilting/Unobscuring

In waves zero-to-peak at 587.5618 nm ; before tilting

Aberrations	Surface 1	Surface 2	Surface 3	Sum
Linear Coma	-5.57	2.76	2.81	0.00
Field Lin. Field Asym. Ast.	0.00	0.00	0.00	0.00
Quadratic Astigmatism	1.46	1.77	-3.23	0.00
Field Curvature	0.00	2.64	-2.64	0.00

Tilt mirrors to unobscure while canceling introduced linear astigmatism, as we tilt.

	Surface 1	Surface 2	Surface 3		
Tilt	10°		-10°	10°	
Aberrations	Surface 1	Surface 2	Surface 3	Sum	
Linear Coma	-5.49	2.76	2.85	0.13	
Field Lin. Field Asym. Ast.	38.69	-11.20	-27.49	0.00	
Quadratic Astigmatism	1.46	1.79	-3.31	-0.07	
Field Curvature	0.01	2.62	-2.67	-0.03	

UNIVERSITY of ROCHESTER

Full Field Displays (Real Raytracing)

FRINGE ZERNIKE PAIR Z7 AND Z8
FIELD ANGLE IN OBJECT SPACE
Afocal TMA
Minimum $=0.59538 \mathrm{e}-8$
Maximum $=0.0050796$ Average $=0.0021227$ Std Dev $=0.0016161$

X Field Angle in Object Space - degrees
vs
FIELD ANGLE IN OBJECT SPACE

Minimum $=0.26505 \mathrm{e}-7$
Maximum $=0.21615$ Average $=0.13991$ Std Dev $=0.047951$

UNIVERSITY of ROCHESTER
Tech Days Nov. 2, 2016

Conclusion

- Several analytical starting point design methods are being developed to facilitate a survey of the four-mirror freeform solution space.
- A combination of these methods can allow for unobscured starting points that are corrected for third order image degrading aberrations.

This work was supported by a NASA Space Technology Research Fellowship

Questions?

