SBIR Phase I for Contract No. NNX16CM17P

"Ultra-Stable Zero-CTE HoneySiC™ and H2CMN Mirror Support Structures"

Contract Brief

Fantom Materials, Inc. Dr. William Fischer Principal Investigator Phone: (808) 245-6465 Cell: 570.899-4191 Bill.Fischer@FantomMaterials.com

Background & Technology Gaps

- NASA Strategic Plan 2014, New Worlds, New Horizons, seeks cost-effective, high performance advanced space telescopes for Astrophysics and Earth Science
- 2015 NASA Technology Roadmap (TA 8: Science Instruments, Observatories and Sensor Systems, part 8.2 Observatories) sub-goal for structures:
 - The ability of the structure to hold mirrors in a stable, strain-free state under the influence of anticipated dynamic and thermal stimuli
 - For extra-large apertures, a method to create the aperture via deployment, assembly, or formation flying
- NASA MSFC, GSFC and JPL interested in Ultra-Stable Mirror Support Structures for Exoplanet Missions
 - Telescopes with apertures of 4-meters or larger and using an internal coronagraph require a telescope wavefront stability that is on the order of 10 pico-meters RMS per 10 minute
 - IR/FIR missions requiring 8-meter or larger diameter mirrors with cryogenic deformations <100 nm RMS

Technical Solution: HoneySiC

 HoneySiC[™]: Fantom's innovative, additively manufactured, ceramic matrix composites

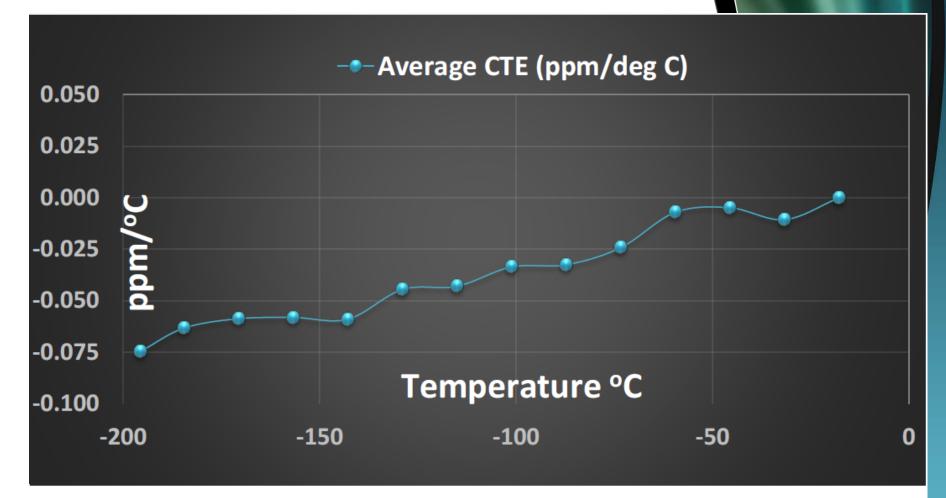
- HoneySiC T300 carbon fiber reinforced SiC CMC
- HoneySiC H²CMN hybrid hierarchical ceramic matrix nanocomposite with CNTs
- Program effort addresses the need for stable, strain-free, precision optical structures under the influence of dynamic and thermal stimuli, specifically whiffle plates, delta frames and backplane
- Traceable to the needs of Cosmic Origins for UVOIR, Exo and FIR telescopes
- Maturation of this technology will allow NASA and Fantom to develop a method to create large aperture optical support structures and assemblies via deployment, assembly or active control
- HoneySiC additive manufacturing process significantly minimizes cost and schedule associated with post-production fabrication steps (machining, polishing, metrology).

HoneySiC Features

- Rapid Prototyping Extremely rapid additive manufacturing process with all assets under a single roof.
 - Large complex mirrors/structures could be produced in a matter of weeks.
 - Web thickness < 1mm, core geometries (pocket depth, pocket size) easily tailored.
 - Minimizes machining, recurring/non-recurring costs; cost is 100X < beryllium.
- Ultra-low areal cost Cost of raw materials ~\$38K/m² for unpolished HoneySiC, which already meets NASA's goal of \$100K/m² -> ~100X reduction in mirror cost based on current cost of \$4-\$6 million/m².

Ultra-low areal density

- Facesheets density same as beryllium; sandwich constructions are a fraction of Be density.
- Void space in cells of honeycomb enables maximum lightweighting and stiffness.
- 95% lightweighting w.r.t. bulk silicon carbide.
- Areal density of first panel made: 5.86 kg/m².
- Estimated weight and areal density of a 255-mm mirror: 0.35 kg and 6.8 kg/m², respectively.
- Estimated mass of 305-mm optical bench with inserts: 0.94 kg.
- Extreme dimensional stability CTE of HoneySiC can be tailored to match SiC or reduced to be near-zero with a variation of only 0.42 ppb/°C/°C from -200°C to 0°C in testing at Southern Research Institute.


Carbon fiber reinforced SiC structure

- Thermal conductivity "supercharged" by addition of CNT
- No coefficient of moisture expansion (CME)
- Low Z for nuclear survivability
- Electrically conductive for dissipating static charge build-up
- ~2X higher fracture toughness than pure SiC, estimated ~4.6 MPa-m^{0.5}

Nuclear and Space Survivable - Precursor carbon-carbon honeycomb is flying on >100 space crafts.

Ultra low CTE Material

Average instantaneous CTE for T300HoneySiC. The slope of the curve over the temperature range is only 0.42 ppb/°C/°C!

Tuesday, November 01, 2016

Proposed Phase I Effort

- Collaborate with NASA MSFC, GSFC, JPL and Northrop Grumman Aerospace Systems (NGAS) to design prototype whiffle plates or delta plates to be made in Phase II using HoneySiC or H²CMN materials.
- Evaluate HoneySiC and H²CMN mechanical properties and coefficient of thermal expansion
- Prepare a material property test matrix to be executed in Phase II

Summary of Tasks

Task 1: Kick-off and Requirements Review

 Telecon with Ron Eng (NASA), Dr. Bill Fischer (Fantom), Lauren Bolton (Fantom), Professor Mehrdad Nejhad (UH), Brian Baldauf (Northrop Grumman)

Task 2: Reporting

- Interim report
- Final report

◆ Task 3: HoneySiC[™] and H²CMN Coupon Definition

Identify geometry for material characterization coupons

Task 4: Coupon Preparation

UH will produce T300 and H²CMN coupons

Task 5: Measurements

- UH to perform basic mechanical measurements in-house
- CTE measurements at SoRI and NGAS

Task 6: Phase II Plan

 Preliminary design effort and review for whiffle plate, delta plate, backplane or tube structure to be produced in Phase II

Program Status

♦ HoneySiC[™] and HoneySiC H²CMN Coupon Definition

- HoneySiC and HoneySiC H²CMN will undergo mechanical and CTE testing
 - Mechanical testing: strength, strain/deflection, stiffness and toughness
 - CTE testing: -200°C to +25°C

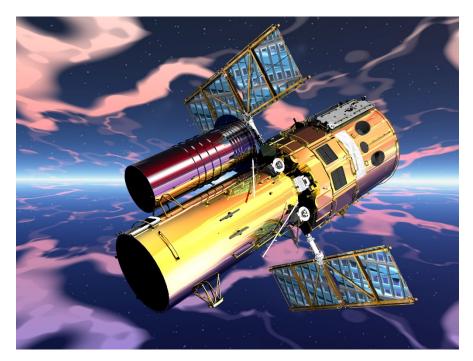
Coupon Preparation

- HoneySiC and HoneySiC H²CMN coupons are in fabrication
- CNT growth complete
- Pre-pregging and PIP in process

Measurements

- UH to perform basic mechanical measurements (underway)
- CTE measurements at SoRI in early November

Phase II Plan


- Preliminary design effort and review
- for Phase II prototype in process

Outcomes of Phase I Effort

- Produce T300 and H²CMN coupons for material characterization
- Basic mechanical and CTE data acquisition
- Phase II material property characterization test matrix
- Preliminary HoneySiC[™] whiffle plate, delta plate, backplane or tube structure design

Proposed Phase II Effort

Complete a full suite of material property measurements

- Measurements will be used to take the Phase I Preliminary Design Review to a Critical Design Review and decision to start prototype production
- Begin production of whiffle plate, delta plate, backplane or tube structure prototypes
- Continue to develop 3D Printing capability
 - Processing will remove any inherent layering issues that can reduce the variability that can be found in many traditional 3D printing processes
 - Process also removes any potential layering issues in finished composites
 - Will further reduce lead time and cost

NASA Applications

 NASA sees potential for HoneySiC[™] as an affordable technology for large observatories and future astrophysics missions⁵ for:

- The Formative Era, answering such questions as "What are exoplanets like?"
 - Characterizing planet forming disks and planetary atmospheres with the LUVOIR Surveyor.
 - Searching for life using the LUVOIR Surveyor to obtain full-disk images and spectra of pale blue dots.
 - Making longitudinal maps and detecting seasonal variations on exoEarths.
 - Searching for signs of habitability and evidence of biological activity on exoEarths.
- The Visionary ERA, searching for life using an ExoEarth Mapper to produce resolved maps and spectra of "New Earth", confirming surface water and identifying possible life.

