THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

Field Testing the Starshade

11/12/2015

Steve Warwick Starshade Program Manager

- Inner Working Angle is the closest separation of Planet and Star that we can expect to see with a given starshade
- For Hypergaussian starshade, this is approximately equivalent to:

$$IWA = \frac{D_{ss}/2}{z}$$

The smaller the IWA, the more habitable zones we can examine

Starshade Basics – Fresnel Number

 Starlight suppression by a starshade is determined by the Fresnel Number:

$$- F \# = \frac{D_{SS}^2}{4\lambda z}$$

 This factor completely specifies the shadow of a Hypergaussian starshade

For a fixed Suppression, a larger Starshade at a greater distance gives a smaller IWA

Starshade Basics – Resolution Elements

- Resolution is the diffraction limited resolution of the telescope
- Resolution elements refers to the IWA of the starshade divided by the resolution of the telescope
- General agreement is that resolution element should be equal or greater than 2λ/D to allow separation of planets and exozodi
- More resolution elements are better.

For a Smaller IWA, a larger telescope is required for a fixed number of Resolution Elements

Starshade Basics – An Example

Inner Working Angle = 17.5m/30,000km = **120mas**

Fresnel Number = $50m^{2}/(4*600nm*185,000km) = 17$

Minimum Telescope Diameter = 2*600nm/120mas = **2.4m**

A larger telescope gives better resolution and collects more photons

IWA and Suppression are independent of the telescope diameter

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

Field Testing a Starshade

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

Field Testing 2014/15

Best Contrast Ratio

- Planet LEDs are Standard LEDs with ND filters in front.
 - ND4 planet ~8E-9 below main source
- Light Scatter from dust is modelled and subtracted from the image
- Slight vertical variation between images due to air disturbances.
 - Images collocated using Planet LEDs

3σ Standard Deviation in box closest to the starshade = **9.09E-10**

Starshade to Telescope Separation	Starshade Diameter	Telescope Aperture	Resolution	Resolution Elements	Inner Working Angle	Fresnel Number
1km	0.5m	0.04m	3.8 arcsec	26.8	51 arcsec	210
80,000km	50m	2.4m	0.063 arcsec	2	0.065 arcsec	13

Testing Engineering Sensitivities – Flawed Starshade Performance

- 6 families of flaw each applied to Hypergausian and Numerically Determined Starshades
 - Simulations predict patterns field test optical lengths

Model Verification

Model Predictions vs. Measurements

- Ratios of flaw peaks modeled independently by NG, JPL, and CU to the peaks measured in the field.
- Points above the line indicate the model predicted a brighter response than was measured

Integrated Light Field Mirror

NG Telescope & Camera

CONTRACTOR OF THE

Heliostat & 4" Starshade

Observing Table Mirror

Jupiter Transit of Hypergaussian Starshade (1 of 11)

March 22, 2015, Image #470 pixel number pixel number

Jupiter, Moons, and HG Starshade

Apparent Jupiter motion controlled by Heliostat Slew Rate

Jupiter Transit of Hypergaussian Starshade (2 of 11)

Jupiter Transit of Hypergaussian Starshade (3 of 11)

March 22, 2015, Image #476 pixel number pixel number

Jupiter, Moons, and HG Starshade

Jupiter Transit of Hypergaussian Starshade (4 of 11)

Jupiter Transit of Hypergaussian Starshade (5 of 11)

Jupiter Transit of Hypergaussian Starshade (6 of 11)

Jupiter Transit of Hypergaussian Starshade (7 of 11)

Jupiter Transit of Hypergaussian Starshade (8 of 11)

Jupiter Transit of Hypergaussian Starshade (9 of 11)

Jupiter Transit of Hypergaussian Starshade (10 of 11)

Jupiter Transit of Hypergaussian Starshade (11 of 11)

Physics of Starshade Shape Demonstrated on Jupiter using McMath Telescope

NORTHROP GRUMMAN

Physics-Defined proper shape cancels source light of object

Integrated Light Field Mirror

Vega with 12" HG Starshade: June 16, 2015 Image #165 (300 Seconds)

Vega with 8" HG Starshade: June 18, 2015 Image #173 (120 Seconds)

Vega with 4" HG Starshade: June 18, 2015 Image #246 (120 Seconds)

Test	Starshade to Telescope Separation	Starshade Diameter	Telescope Aperture	Resolution	Resolution Elements	Inner Working Angle	Fresnel Number
1	0.14km	0.10m	0.04m	3.8arcsec	31.1	59arcsec	32
2a	0.4km	0.29m	0.12m	1.5arcsec	82.7	62arcsec	87
2b	0.4km	0.20m	0.08m	1.9arcsec	43.2	41arcsec	42
2c	0.4km	0.10m	0.04m	3.8arcsec	11.1	21arcsec	10
Field	1km	0.5m	0.04m	3.8arcsec	26.8	51arcsec	210
Space	80,000km	50m	2.4m	0.063arcsec	2	0.065arcsec	13

- McMath Tests allow flight like Fresnel number and close to flight like Resolution elements
- McMath Inner working angle remains ~50 times larger than flight like.

Starshade Basics – Fresnel Number

 Starlight suppression by a starshade is determined by the Fresnel Number:

$$- F \# = \frac{D_{SS}^2}{4\lambda z}$$

 This factor completely specifies the shadow of a Hypergaussian starshade

THROP GRUMMA

For a fixed Suppression, a larger Starshade at a greater distance gives a smaller IWA

- Field and McMath testing are complementary
 - Flat and diverging beam
 - Very bright and not so bright
- Currently ongoing McMath test at longer baseline *may* be able to image astronomical bodies with IWA of 12 arcsecond
 - Our first target is the Fomalhaut disk

THE VALUE OF PERFORMANCE.

Vega with 8" HG Starshade: June 18, 2015 Image #173 (120 Seconds)

Vega with 4" HG Starshade: June 18, 2015 Image #246 (120 Seconds)

