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• Efforts associated with this presentation are performed as part of the Advanced Mirror 
Technology Development (AMTD) program

• Larger aperture space telescopes are required to answer our most compelling science questions.

• AMTD’s objective is to mature to TRL-6 critical technologies needed to produce 4-m or larger flight-
qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal 
Review. 

•To accomplish our objective, we: 
• Use a science-driven systems engineering approach.
• Mature technologies required to enable highest priority science AND result in a high-performance 

low-cost low-risk system.

What is AMTD?



Description of Primary Mirror

• 4m Circular Monolith

• 0.152m depth front to back

• Light-weighted with a back sheet

• Areal Density is 146 kg/m2

• Optical face coated with εaluminum=0.03

• Fixed Mount

• Material Properties:
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Material
Conductivity
[W/(m*K)]

Specific Heat
[J/(kg*K)]

Density
[kg/m3]

Emissivity
CTE

[1/K]
ULE 1.31 766 2210 0.82 30x10-9

Silicon Carbide 180 750 3100 0.9 2.2x10-6

Zerodur 1.46 800 2530 0.9 7x10-9



Heat Flow Through Mirror
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• Most heat enters the 
mirror from the heated 
plate and exits through 
the optical surface

• Heat is transported by 
radiation (56%) and 
conduction (44%)

Not to scale



Description of Telescope Architecture

• Cylindrical Shroud; 60˚ Scarf

• No secondary mirror or baffles

• MLI on outer surface of shroud 
& sides of mirror ε*MLI=0.03

• Inner surface of shroud painted black

• Heated plate behind mirror

• Placed at L2
Mirror

Heated Plate

Shroud

Scarf
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WFE Contour Video

6



WFE Visualization
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Sample WFE Contour Plot (50mK, 140s Period) Sample WFE with Focus, Tilts, and Astigmatisms 
Removed (50mK, 140s Period)



WFE Stability versus Controllability

• Material: ULE

• Period of ACS: 5000s

• Controllability of ACS: Varied

• Density of Mirror: ULE Density

• Emissivity: 0.82

• Thicknesses: Baseline Design

• Conductivity: ULE Conductivity
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WFE Stability versus Controllability
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WFE Stability versus Period

• Material: ULE

• Period of ACS: Varied

• Controllability of ACS: 50mK

• Density of Mirror: ULE Density

• Emissivity: 0.82

• Thicknesses: Baseline Design

• Conductivity: ULE Conductivity
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WFE Stability versus Conductivity

• Material: ULE

• Period of ACS: 140s

• Controllability of ACS: 50mK

• Density of Mirror: ULE Density

• Emissivity: 0.82

• Thicknesses: Baseline Design

• Conductivity: Varied
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WFE Stability versus Mass and Control

• Material: ULE

• Period of ACS: 140s

• Controllability of ACS: Varied

• Density of Mirror: Varied

• Emissivity: 0.82

• Thicknesses: Baseline Design

• Conductivity: ULE Conductivity
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WFE Stability versus Thicknesses

• Material: ULE

• Period of ACS: 140s

• Controllability of ACS: 50mK

• Density of Mirror: ULE Density

• Emissivity: 0.82

• Thicknesses: Varied

• Conductivity: ULE Conductivity
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WFE Stability versus Emissivity

• Material: ULE

• Period of ACS: 140s

• Controllability of ACS: 20mK

• Mirror Density: ULE Density

• Emissivity: Varied

• Thicknesses: Baseline Design

• Conductivity: ULE Conductivity
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WFE Stability versus Material

• Material: Varied

• Period of ACS: 140s

• Controllability of ACS: 50mK

• Mirror Density: Material Based

• Emissivity: Material Based

• Thicknesses: Baseline Design

• Conductivity: Material Based
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Quick Review
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• RMS WFE Range is directly proportional to the ACS’s 
controllability and period.

• RMS WFE Range is inversely proportional to the mirror’s heat 
capacity and has a weak, negative linear relationship with 
conductivity and emissivity.

• For the material properties used, Zerodur causes the easiest to 
meet requirements on an active control system, followed 
closely by ULE, and distantly by Silicon Carbide 



1-D Rod Closed-Form Model
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Rod with a mass, specific heat, thermal energy, temperature and coefficient of thermal expansion of m, cp, Q, T, and CTE respectfully

Length of rod, L

𝑑𝑄

𝑑𝑡
= ρ𝑉𝑐𝑝

𝑑𝑇

𝑑𝑡
Equation 1

 CTE)𝐿𝛥𝑇 = 𝛥𝐿 Equation 2

𝑑𝑇

𝑑𝑡
 CTE)𝐿 =

𝑑𝐿

𝑑𝑡
Equation 3

𝑑𝐿

𝑑𝑡
=

 CTE)𝐿

𝜌𝑉𝑐𝑝

𝑑𝑄

𝑑𝑡
Equation 4

• Equation 1 describes heat transfer in and out of 
the rod

• Equation 2 describes linear thermal expansion 

• Algebra and calculus then Equation 5

• Equation 4 shows variables that affect thermal 
strain rate

– Geometry dependent: L, V, dQ/dt (surface area)

– Material dependent: CTE, ρ, cp, and dQ/dt
(emissivity and absorptivity)



Summary
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• Numerical and analytical models agree that heat capacity and 
CTE have very strong affects on thermal deformation rates.

• For an actively controlled substrate, the following figures of 
merit are proposed: 

Massive Active Optothermal Stability,MAOS =
𝜌𝑐𝑝
𝐶𝑇𝐸

Active Optothermal Stability, AOS =
𝑐𝑝

𝐶𝑇𝐸

𝑑𝐿

𝑑𝑡
=

 CTE)𝐿

𝜌𝑉𝑐𝑝

𝑑𝑄
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0.5, 36.3

1.0, 17.3

2.0, 8.0
4.0, 3.5

0

5

10

15

20

25

30

35

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

R
M

S 
W

FE
 R

an
ge

(p
m

)

Normalized Rib Thickness (Simulated Rib Thickness/Design Rib Thickness)

y = 18.063/x - 0.31553x



Summary Continued
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A data table of potential substrate materials is provided*

Material
Massive Active Optothermal

Stability (TJ/m3)

Active Optothermal

Stability (GJ/kg)

Specific heat 

(J/kg/K)

Density 

(kg/m3)

Coefficient of thermal 

expansion (1/K)

Fused silica 2.91 1.32 741 2202 5.60E-07

ULE 7971 112 51.1 766 2200 1.50E-08

Zerodur 83.1 32.8 821 2530 2.50E-08

Cer-Vit C-101 140 56.0 840 2500 1.50E-08

Beryllium I-70A 0.298 0.161 1820 1850 1.13E-05

Aluminum 6061-T6 0.113 0.042 960 2710 2.30E-05

Silicon Carbide CVD 0.936 0.292 700 3210 2.40E-06

Borosilicate crown E6 0.595 0.255 830 2330 3.25E-06

* Data in this table is compiled from Yoder, P.R., Opto-Mechanical Systems Design, 2nd ed., Marcel Dekker, New York, NY (1993).



Any Questions?
Contact Information

Email: thomas.brooks@NASA.gov

Phone Number: (256) 544-5596
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Methodology

Thermal Analysis 
done in Thermal 

Desktop

Write NASTRAN 
input file

Run Thermal 
Deformation Analysis in 

NASTRAN

Post Processes 
Data for Optical 

Analysis

• Tasks boxed in red are handled entirely with a program written in Python.
• Program saves weeks of work per analysis.
• Program has been used to determine relationships between the telescope’s characteristics and 

technical performance parameters like stability.
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