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processes to map accelerating Li-ion battery degradation.
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The background of my group 
and this work

Initial presentation of results

Detailed look at the automated 
techniques used

Extended look at the 
performance of the automated 

approaches used
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PhD focus: data-driven 
approaches for battery health



State of health, capacity and end of life
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Muddle, couple, toil and trouble
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Baumhöfer et al., “Production caused variation in 
capacity aging trend and correlation to initial cell 

performance,” Journal of Power Sources, 247, 
332-338, 2014. Birkl et al., “Degradation diagnostics for lithium ion cells,” Journal of Power Sources, 

341, 373-386, 2017.
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or…

Garbage in ➔ Garbage out
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As part of designing a given model of battery degradation, an engineer must make a decision over what shall be the 
input. In question form, that is “What causes the Li-ion battery to behave in that way?” However humans are prone 
to bias, and our understanding of battery degradation is insufficiently comprehensive to confidently map between 
use and capacity over an entire cell life. For data-driven techniques, this is especially critical. The performance of a 

given model will effectively be decided by the choice of inputs, a choice which we are very likely to get wrong. If that 
probable wrong decision is made, then the results will be poor. The results will be especially poor the further you 

push your test set from any training data. 

Data-driven approaches have a problem.
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Richardson et al., “Gaussian process … state of health,” Journal of Power Sources, vol. 357, pp. 209-219, 2017.

(a) ≈ (c)+(b) 
≈ (c) 
> (b) 

>> (d)



So how to forecast the “knee”?
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Good results were achieved by prioritising work on the inputs
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Severson 2019: Severson et al., “Data-driven … degradation,'' Nature Energy, vol. 4, pp. 383--391, 2019.

Attia 2020: Attia et al., “Closed-loop … learning,'' Nature, vol. 578, pp. 397--402, 2020.

Root mean square error of capacity: 0.83%

End of Life time prediction error: 1.3%

Time of knee point prediction error: 2.6%

Median results



Automating feature generation and selection

How to produce a set of model inputs that reflect the range of use in a data set but are 
sensitive the variability of battery degradation.
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Severson 2019: Severson et al., “Data-driven … degradation,'' 

Nature Energy, vol. 4, pp. 383--391, 2019.

Raw use data

Data-driven 
degradation 

model

Find model inputs

We propose to automate the process prior to modelling.
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Severson 2019: Severson et al., “Data-driven … degradation,'' 

Nature Energy, vol. 4, pp. 383--391, 2019.
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We propose to automate the process prior to modelling.



We propose to automate the process prior to modelling.
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Severson 2019: Severson et al., “Data-driven … degradation,'' 

Nature Energy, vol. 4, pp. 383--391, 2019.
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Model inputs (features) are calculated based on time spent in different regions.
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Severson 2019: Severson et al., “Data-driven … degradation,'' 

Nature Energy, vol. 4, pp. 383--391, 2019.



Model inputs (features) are calculated based on time spent in different regions.
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Severson 2019: Severson et al., “Data-driven … degradation,'' 

Nature Energy, vol. 4, pp. 383--391, 2019.



Model inputs (features) are calculated based on time spent in different regions.
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Severson 2019: Severson et al., “Data-driven … degradation,'' 

Nature Energy, vol. 4, pp. 383--391, 2019.



Pearson’s rank produces a reliable set of inputs.
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Correlation matrix

Selected features

Severson 2019: Severson et al., “Data-driven … degradation,'' 
Nature Energy, vol. 4, pp. 383--391, 2019.



5 varied features can then be passed to the degradation model
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Data-driven 
degradation 

model

Input features

Output target



Gaussian processes are known to be effective for batteries.
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Richardson et al., “Battery … model”, Journal of 
Energy Storage, vol. 23, pp. 320-328, 2019

Transition model Capacity forecast

Data-driven 
degradation 

model

Gaussian processes for machine learning, Rasmussen and Williams, 2006.



100 training cells
30 test cells

Repeat 20 times

600 trials

Raw variables: current, voltage, temperature, absolute 
current, power, absolute power
Percentiles: 1st, 33rd, 67th, 99th

147 cells in total from Severson 2019 and Attia 2020
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Severson 2019: Severson et al., “Data-driven … degradation,'' Nature Energy, vol. 4, pp. 383--391, 2019.

Attia 2020: Attia et al., “Closed-loop … learning,'' Nature, vol. 578, pp. 397--402, 2020.

Testing



End of life scatter
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Severson 2019: Severson et al., “Data-driven … degradation,'' Nature Energy, vol. 4, pp. 383--391, 2019.

Attia 2020: Attia et al., “Closed-loop … learning,'' Nature, vol. 578, pp. 397--402, 2020.

Measured capacity

Predicted capacity



We see tight profiles and consistent knee forecasts.
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Model 
performance

Capacity 
accuracy

Lifetime 
estimation
(Mean = 2.0%)

Knee point 
forecasts

Severson 2019: Severson et al., “Data-driven … degradation,'' Nature Energy, vol. 4, pp. 383--391, 2019.
Attia 2020: Attia et al., “Closed-loop … learning,'' Nature, vol. 578, pp. 397--402, 2020.
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How to test 
further?

Number of 
features

Availability of 
late-life data

Precision of input



Whole process coped with reduced late-life data
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Severson 2019: Severson et al., “Data-driven … degradation,'' Nature Energy, vol. 4, pp. 383--391, 2019.

Attia 2020: Attia et al., “Closed-loop … learning,'' Nature, vol. 578, pp. 397--402, 2020.



50 training cells, but rounded raw data
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Rounding current and 
temperature to integers 
and voltage to 2 s.f.

Still fairly successful for 
EoL estimation, but 

higher degradation rates 
were poorly predicted.

Severson 2019: Severson et al., “Data-driven … degradation,'' Nature Energy, vol. 4, pp. 383--391, 2019.
Attia 2020: Attia et al., “Closed-loop … learning,'' Nature, vol. 578, pp. 397--402, 2020.



Automated approach is quite robust to reducing features.
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Median

95th percentile

Median with 
only time

Median
Median

Severson 2019: Severson et al., “Data-driven … degradation,'' Nature Energy, vol. 4, pp. 383--391, 2019.
Attia 2020: Attia et al., “Closed-loop … learning,'' Nature, vol. 578, pp. 397--402, 2020.

Most common selection 
of three inputs:



What about credible intervals?
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Severson 2019: Severson et al., “Data-driven … degradation,'' Nature Energy, vol. 4, pp. 383--391, 2019.

Attia 2020: Attia et al., “Closed-loop … learning,'' Nature, vol. 578, pp. 397--402, 2020.
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Where do we go from here?
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End of life and 
capacity confidence

More data sets The real world?



Thank you for listening

Twitter: @segreenbank

Email: samuel.greenbank@eng.ox.ac.uk

Website: http://howey.eng.ox.ac.uk/
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