Battery Passivation Strategies for Satellites at End of Mission

NASA Battery Workshop

Bruno Samaniego – Airbus Defence & Space Huntsville, AL- 15th November 2017

Why are we talking today about Battery Passivation?

- Video presentation.
- 2008 Loi d'Opérations Spatiales (LOS)
- 2012 Passivation Electrique En Fin De Vie Du Sous-Système De Puissance (CNES n°116287/00):
- 2014 Spacecraft Power System Passivation (ESA n°: AO/1-7840/14/NL/LvH).
- 2015 Battery Passivation (ESA n° AO/1-8325/15/NL/LvH).

Causes of known satellite breakups until 2008. Source: US Space Surveillance Network (SSN)

SAFTABSL

ind its contents are property or Amous Defende and Space. mmunicated to any third party without the owner's written consent] [Airbus Defence and Space Company name]. All rights n

Spacecraft Power System Passivation - Thermal analysis

<u>Three different cases</u> have been studied:

- a LEO spacecraft with a battery located outside the satellite (**AstroBus-S platform**)
- a LEO spacecraft with batteries located inside the satellite (AstroBus-M or AS250 platform)
- a GEO satellite (E3000 platform)

Thermal analysis: GEO case

For this case, the assumptions that could be taken:

• Duration: 100 years (or forever)

• Orbit: Geo-synchronous orbit.

Season: Solstice: No Eclipse (Certain worst case)

Attitude: Disturbance torques (Solar pressure? Gravity?).

Radiator pointing to the Sun is a Possible scenario.

• Battery covers:

MLI completely torn off Unlikely? Likely? (micro-meteoroids during 100 years...)

Absorptivity degraded to 1: Possible (MLI protects until it is torn off)

Heatpipes failure: Unlikely (passive device)

Internal MLI remains intact Likely

Spa Rad

Spacecraft Power System Passivation Radiation analysis

Dose partition on battery/ Airbus DS

Approach of the Study

Objective of the Study:

To test Li-lon battery cells and modules under extreme conditions encountered after spacecraft disposal in order to assess their safety.

Approach:

1 Iteration on the test specifications and test plans

2 Test samples supply

3 Upgrade of test samples conditions

4 Tests execution

5 Tests results analysis

Test Campaign

- Cells to be tested:
 - ABSL:
 - 18650HC
 - 18650HCM
 - 18650NL
 - <u>SAFT:</u>
 - VES140
 - VES180
 - VES16
- How?
 - By performing a first test campaign just on VES140 model.
 - Assessing the impact of aging, radiation and SOC.
- Why VES140?
 - Because of the availability of aged and representative cells.
 - Because new cells VES180 are more valuable for current and future missions.

External Short-circuit

ARC Overtemperature

Battery Passivation

Tests

Internal Short-circuit

Overcharge

Overdischarge

Direct connection between the positive and negative terminals of a cell and/or battery.

Can be caused by:

- Faulty connections between the positive and negative terminals
- Conductive electrolyte leakage paths within a battery
- Structural failures.

Can result in:

- Very high current spikes that cause high pressures inside the cell resulting in venting and explosions.
- The organic solvent leaves the cell via the vent.
- Any hot spot may induce a fire and ejection of parts.

· Can be prevented:

- With the use of CIDs/CBs and/or PTCs
- Fuses, circuit breakers, thermal switches at battery level.

Assessment on Li-Ion Battery Safety External Short-circuit

RESULTS

 Cell opening: positive terminal (To +1'44")

- Ejection of electrolyte

Max current: 1200A
Max temperature: 160°C

9

- Direct contact between the positive and negative materials inside a battery cell.
- Can be caused by:
 - Manufacturing defect.
 - Induced internal shorts in the field: due to usage and/or storage in extreme thermal environments; to usage outside manufacturer's voltage and current specifications; to high thermal gradients or to a crash or a failure of the fixture system
- Can result in:
 - Venting, fire, smoke, and go into thermal runaway.
- Can be prevented:
 - No prevention
 - Use of venting disk to mitigate the impact.

Assessment on Li-Ion Battery Safety Internal Short-circuit

Voltage at 0.5V 25s after the beginning of the short-circuit

Fast exothermic reaction
Release of black smoked

Max temperature: 460°C

On the anode: intercalation of lithium.

- Overcharge can cause plating rather than
 - The plating is not necessarily homogeneous, but dendritic in form, it can ultimately result in a short circuit.
- On the cathode:
 - Overcharge can cause excess removal of lithium. The crystalline structure becomes unstable, resulting in an exothermic reaction.
- Can be caused by:
 - Charging a cell to too high of a voltage (over voltage overcharge).
 - Charging at excessive currents, but not excessive voltages, can also cause an overcharge failure
- Can result in:
 - Immediate cell thermal runaway,
- Can be prevented:
 - With the use of CIDs/CBs at cell level.
 - Fuses, circuit breakers, thermal switches at battery level.
 - Voltage control at battery level.

Assessment on Li-Ion Battery Safety Over-charge

Cell opening: positive terminal (To +56'10")

+ Ejection of electrolyte Ejection of jelly roll

+ Release of smoked

Max temperature: 800°C

- Over-discharge can cause internal damage to electrodes and current collectors (i.e., dissolution of copper), can lead to Cu dendrite generation and can ultimately lead to short-circuit.
- Can be caused by:
 - Discharging a cell to too low of a voltage.
- Can result in:
 - Exothermic reaction linked to the copper reduction-oxidation reaction, no thermal runaway since there is almost no electric charge.
- Can be prevented:
 - With the use of CIDs/CBs at cell level.
 - Voltage control at battery level.

Assessment on Li-Ion Battery Safety Over-discharge

Battery passivation - S140-09 - Overdischarge test

- N2 flow: 0.1L/min
- Charge the cell at C/10 up to defined SoC (100% SoC; 50% SoC; 0% SoC)
- Increase gradually the temperature until a thermal runaway appears. Stop heating.
 - Temperature step: 5°C
 - Temperature rate sensitivity': >0.02°C/min. = thermal runaway
 - End temperature': 180°C (test stop)
 - Safety temperature rate': 1°C/min. (test stop)

- Operating at high temperatures helps to get higher power out of the cell by increasing the reaction rate, but higher currents give rise to higher I²R heat dissipation and thus even higher temperatures.
- Can be caused by:
 - Exotherms begin at anode due to SEI (Solid Electrolyte Interphase) reactions and decomposition at temperatures as low as 50°C.
- Can result in:
 - Cell thermal runaway.
 - Separator melting and decomposition,
 - Hot surface ignition of flammable mixtures, there must be sufficient oxygen in the surrounding environment to sustain combustion o
 - · Cell contents may be ejected .
- Can be prevented:
 - With the use of Internal Protective Devices.
 - Low SOC, the ambient environmental temperature, the electrochemical design of the cell and the mechanical design of the cell.
 - Aging reduces carbon reactivity (more stable, well developed SEI layer) leading to more thermally stable cell

Assessment on Li-Ion Battery Safety High temperature

1 December 2017 14

Micrometeoroids impact can be associated to a mechanical damage (crush or penetration).

• Can be caused by:

· Micrometeoroid and/or debris impact.

Can result in:

- Damage that occurs at electrode edges is significantly more likely to cause cell thermal runaway than damage perpendicular to electrode surfaces.
- Perpendicular to electrode surfaces: low impedance shorting will occur between current collectors, and cell heating may be too low to result in cell thermal runaway.
- Perpendicular to electrode edges: that deformation is likely to result in **high impedance** shorting between electrode layers and initiate cell thermal runaway

Can be prevented:

• With the mechanical design of the cell, battery and/or spacecraft.

Assessment on Li-Ion Battery Safety

Micrometeoroids and Debris

An aluminum ball of 8mm diameter is projected three different location of the cell. Its mass is 0.72 – 0.73 g and its speed is above 1000 m.s-1

RESULTS

Max temperature: 400°C

Max temperature: 680°C

15

External Short-circuit

ARC Overtemperature

Internal Short-circuit

Micrometeoroids Debris

Overcharge

Overdischarge

This looks awful... so what can we do?

At Battery level

- Discharge your battery as much as possible at the EoM.
- Connect it to a bleed resistance and disconnect it from the bus.
- Cell internal protections are an asset.
- Develop safer batteries: solid electrolyte, casings, inter-cells material...

At Satellite level

- Assess the most probable attitude once the satellite is uncontrolled.
- Determine the worst thermal scenario and design the S/C to be avoided.
- Determine the best possible way to reduce the satellite temperature: spin it!

