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Rec. ITU-R RA.479-5

RECOMMENDATION ITU-R RA.479-5% **

Protection of frequencies for radioastronomical
measurements in the shielded zone of the Moon

a)  that Resolution B16 of the 1994 XXIIth General Assembly of the International Astronomical
Unton (IAU) (see Annex 2) recommends that, once radio astronomy observations in the Shielded
Zone of the Moon (SZM) commence, radiocommunication transmissions m the SZM be limited to
the 2-3 GHz band, but that an alternate band at least 1 GHz wide be identified for future operations
on a time-coordinated basts between radio astronomy and lunar communication systems;

Radiocommunications limited to the

2-3GHz band in the SZM

A lunar PNT system should be
limited to the 2-3GHz band
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o

Frequency
Band
390-405 MHz

210-420 MHz

Original Plan

435-450 MHz

Link Types Applicable Constraints?®
Allocated Services?®

= Lumar Orbit (LO) to
Lunmar Surface (LS

= L5 and LD EVA
Communications and
Wireless Network

= L5 to LO
= L5 Communications E
Wireless Network

= L0 o LS communications in this band will operate on a
non-interference basis (MIB) to any allocated services

* Shielded Zone of the Moon (5ZM) consideration may
apply. S5ee Note 5.

* Power Flux Density {PFD) limits for protection of
terrestrial fived and mobile per ITU BRR. No distance
limitation. [Modified at WRC-15 based on Ref. Error!
Reference source not found.]

= L5 to LD communications in this band will operate on a
MIB to amy allocated services
= 57M consideration may apply. 5ee Note 5.

1614-1626.5 |
MHz

2025-2110
MAHz

2200-2230
MHz

2290-2300
MAHz

Pivot to 2.48GHz

= |5 %o LO

= Earth to LD (SRS
Earth-to-space [E-s])

= Earth to L5 (SRS E-s)

= O to LS (505 space-
to-space [5-5])

# L0 to Earth (SRS

space-to-Earth [5-E])
= |5 to Earth (SRS s-E)
® LS to LO (505 5-5)

= c-E or s-s

® L5 to LD communications in this band will operate on a
MNIB to amy allocated services

* 57fM consideration may apply. 5ee Note 5.

* For Mon-Geostationary Orbit (NG5S0 satellites, TT&C
limited to science missions

® 5-5 PSD per CCS5D5 recommendations to reduce potential
Radio Freguency Interference [RF1) to E-s links

* transmission masks when usaed in s-5 direction with 2200-
2230 MHz

* Uze for manned emeargency comm (uplink or through
Data Relay Satellites, DRS)

* paximum channel Bandwidth (BW) of & MHz

= Ses Note 4

® For NG5S0 satellites, TTEC limited to science missions

® 5 Power Spectral Density (PSD) per CCSDS
recommendations to reduce potential RFI to s-E links

= transmission masks based on necessary bandwidth and
modulation

* Maximmum channel BW of 5 MHz

®* Protection of deep space operation per Ref. Ermor!
Reference source not found.

= Manned spacecraft emergency use, excluding 2293-22597
MHz [Ref. Error! Reference source not found. protection
required within 2293-2297 MHz)

= Sz Note 4

2400-2480
MHz

= L5 Communications E
Wireless Network

® Lunar surface communications and wireless networks in

this band will operate on a NIB to any allocated services
= 5ZM consideration may apply. 5ee Note 5.
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1. This architecture directly supports the agency’s Moon to Mars Artemis Program.

2. A networking architecture enables commercial, interagency, and international partnerships and opportunities as seen in the
terrestrial Internet.

3. A disruption tolerant networking (DTN) architecture allows for the build-up of the infrastructure in a phased approach that
does not require continuous end-to-end connectivity for all users.

4, A DTN-based network architecture will fully translate for use at Mars when the speed of light delays to Earth are much
greater than those between the Moon and Earth.

5. Aggregating data to minimize the number of simultaneous links required between the Moon and Earth will maximize
bandwidth efficiency and thus stay within reasonable costs of the Earth ground station systems (It is unreasonable to assume
an >18m antenna for every SmallSat in view from Earth, for example).

6. LunaNet is an instantiation of the Space Mobile Network framework, fully consistent with NASA SCaN architecture and the
currently defined International Lunar Communications Architecture.

7. Position, Navigation, and Timing (PNT) and Science Utilization Services including Space Weather (SpWx) are critical to lunar
space and surface users as well as astronaut safety.

8. The LunaNet architecture fosters the establishment of commercially sourced supply chain for components, subsystems,
services, and other needs.
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« Support early science instruments and exploration in the Aiken
Basin region

« Scalable approach consistent with LunaNet architecture
» Use small sat and COTS parts where possible

* Provide accurate timing information ~1usec

* Provide coarse position information ~10m

* Provide emergency SMS service

* Provide broadcast “Amber Alerts” regarding space weather
events
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Lime SDR

MAXWELL CubeSat CU-E3 CubeSat
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Lunar orbit are generally unstable
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1. One ring of 6 units on rim of Shackleton crater (22km diameter)

« Two stable units (Rb oscillator)

* One at South Pole
* One on opposite side of Shackleton crater

» Four additional standard units (OCXO or LNCSAC)

2. Second ring of 12 units
1. 44km ring radius centered on Shackleton crater
2. All are standard units

3. Leverage slope of crater for increased range and support in crater
operations

4. 15-20 km transmission range
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GNU Radio software used for capturing measurements and computing biases

- _\

CSAC and SDR hardware for characterizing multiple clocks using an Rb reference
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CSAC testing with Rb Reference

CSAC and Rb testing with GPS Reference
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« JPL is adapting DSN-style two-way PN ranging to the LimeSDR + GNU Radio platform.

 Early versions of the ground station and transponder flowgraphs exist and are stable.
Further development is necessary
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3. Downlink signal transmitted
by Transponder on spectrum

1. Ground station transmits uplink 2. Transponder receives uplink
PN sequence sequence, filters, and re-transmits kS
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Test Complete?

OFDM Communications

OFDM Loopback

OFDM Wired

OFDM Wireless

BPSK Communications

BPSK Loopback

BPSK Wired

BPSK Wireless

Code Ranging

Code Ranging Wired

Code Ranging Wireless

Code Ranging Loopback

Wireless Test Setup
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« CU and JPL are co-developing a lunar PNT system
 Leveraging existing and COTS hardware

» JPL has developed ranging test-bed

* CU has developed hardware for outdoor test range

« BPSK and OFDM operational

* |nitial outdoor test range expected to be operational in late 2022
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