

The Silent S in NICM: NICM Schedule Capabilities

Presenters: Joe Mrozinski Mike DiNicola

NASA Cost Symposium, August 2017

Jet Propulsion Laboratory California Institute of Technology © 2017 California Institute of Technology. Government sponsorship acknowledged.

NICM Team

- Gary Ball
- Luther Beegle
- Justin Boland
- Bob Cesarone
- Mike DiNicola
- Michael Fong
- Hamid Habib-Agahi
- Joe Mrozinski
- Al Nash
- Michael Saing
- Marc Walch

What is NICM?

- NASA Instrument Cost Model
 - Probabilistic Cost Estimates for Space
 Flight Instruments
 - -Used by all NASA Centers
 - And any organization proposing instruments for NASA Instruments
 - And proposal evaluators
 - -Version I Released in 2007
 - Version VII Rev 2 Released 2016

What is NICM?

- NICM also:
 - Estimates schedule
 - Supports JCL
 - Contains an normalized instrument database (for civil servants)
- NICM Terminology:
 - Remote Sensing vs in situ
 - Earth Orbiting vs Planetary
 - Instrument Types

• RSVP for only training at:

Joseph.J.Mrozinski@jpl.nasa.gov

NICM@jpl.nasa.gov

Today's Story: Schedule Estimation

FY04

FY10

- Data Exploration:
 - Histograms, Box Plots
 - Cluster Analysis
 - Principal Components Analysis (PCA)
- Draft SERs for NICM VIII
- Future Work
- Feedback
 - Especially from our new schedule friends!

Data Exploration:

- Histograms, Box Plots
- Cluster Analysis
- Principal Components Analysis (PCA)
- Draft SERs for NICM VIII
- Future Work
- Feedback
 - Especially from our new schedule friends!

80 Data Points analyzed from across the NASA Community

Cost & Schedule are Correlated

Using Box Plots to Find Important Attributes in Data

- Great way to find important categorical attributes in the data
 - Box plots give a feel for the distributions in the data without having to make any assumption on the distributional form
 - Informs regression analysis
- Box plots are defined according to the picture to the right
 - IQR = Inter-Quartile Range = 75th percentile minus 25th percentile

Schedule Duration by Instrument & Sensing Type

Data by instrument and sensing type do not look much different when looking at *absolute* schedule duration...

Schedule per Dollar by Instrument & Sensing Type

...but Schedule Duration **per Dollar** shows potential group differentiation for *in situ*, Fields/Particles and Optical/Microwave instruments

Schedule Duration by Mission Reliability Class

Mission Reliability Class

When LCROSS data are included (36 month development schedule), there will be a more significant difference between Classes C and D

Principal Components Analysis (PCA)

- What if we could somehow look at all variables at once and determine how they are correlated?
 Specifically, what is correlated with schedule duration?
- What if we could identify combinations of variables that explain the most variation in the data

 This could help us develop a regression relationship
- What if we saw the data projected onto the primary sources of variation in the data?
 - This is another way to see how our data might be clustering
 - Different than the previous clustering technique because it factors in correlation

These are some of the many benefits of PCA.

Data Exploration Conclusion

Final three groups for building SERs:

- 1. Earth Orbiting
- 2. Planetary, Remote Sensing
- 3. Planetary, in situ

- Data Exploration:
 - Histograms, Box Plots
 - Cluster Analysis
 - Principal Components Analysis (PCA)

Draft SERs for NICM VIII

- Future Work
- Feedback
 - Especially from our new schedule friends!

Earth Orbiting SER

*PE = Prediction Error of SER (1-sigma); N = # of data points used on SER

Planetary, Remote Sensing SER

*PE = Prediction Error of SER (1-sigma); N = # of data points used on SER

Planetary in situ **SER**

*PE = Prediction Error of SER (1-sigma); N = # of data points used on SER

Group	Equation	Statistics of Merit*
Earth Orbiting	Schedule = $29 \times \text{Cost}^{0.20}$	$R^2 = 71\%$ PE = 18% N = 28
Planetary, Remote Sensing	Schedule = $\begin{cases} 17 \times \text{Cost}^{0.34} \text{ if Optical or MW} \\ 22 \times \text{Cost}^{0.34} \text{ if Fields or Particles} \end{cases}$	$R^2 = 55\%$ PE = 23% N = 36
Planetary, <i>in situ</i>	Schedule = $\begin{cases} 41 \times \text{Cost}^{0.14} \text{ if Mission Reliability Class A} \\ 25 \times \text{Cost}^{0.14} \text{ otherwise} \end{cases}$	$R^2 = 90\%$ PE = 16% N = 12

- Data Exploration:
 - Histograms, Box Plots
 - Cluster Analysis
 - Principal Components Analysis (PCA)
- Draft SERs for NICM VIII
- Future Work
- Feedback
 - Especially from our new schedule friends!

Concluding Remarks & Future Work

- We have shown in this presentation:
 - Candidate SERs for NICM VIII
 - The analysis results that steered us to them
- From here we would like to:
 - Hear what you have to say!
 - Incorporate NASA cost/schedule community feedback into our modeling
- Other work we plan on doing:
 - Update analysis with NICM VIII dataset
 - Keep an eye on Mission Class and Design Life as potential parameters for SERs
 - Look more closely at *in situ* Probe Mounted data
 - Incorporate updated SERs into the NICM VIII Tool

- Data Exploration:
 - Histograms, Box Plots
 - Cluster Analysis
 - Principal Components Analysis (PCA)
- Draft SERs for NICM VIII
- Future Work
- Feedback
 - Especially from our new schedule friends!

Questions?

