BIOLOGY AND BIOTECHNOLOGY

Analysis of a Novel Sensory Mechanism in
Root Phototropism (Tropi) — Correll MJ, Pyle
TP, Millar KD, Sun'Y, Yao J, et al. Transcriptome
analyses of Arabidopsis thaliana seedlings
grown in space: Implications for gravity-
responsive genes. Planta. 2013 June 15; 238(3):
519-538. DOI: 10.1007/s00425-013-1909-x. *

Biological Research In Canisters (BRIC)
— Nicholson WL, Fajardo-Cavazos P, Turner
CC, Currie TM, Gregory G, et al. Design

and validation of a device for mitigating fluid
microgravity effects in Biological Research

in Canister spaceflight hardware. Frontiers
in Space Technologies. 2021; 2: 13. DOI:
10.3389/frspt.2021.797518.

Biological Research In Canisters-24 (BRIC-
24) — Wang M, Danz K, Ly V, Rojas-Pierce

M. Microgravity enhances the phenotype

of Arabidopsis zigzag-1 and reduces the
Wortmannin-induced vacuole fusion in root cells.
npj Microgravity. 2022 September 6; 8(1): 38.
DOI: 10.1038/s41526-022-00226-3.

Biomass Production System (BPS) —
Morrow RC, Crabb TM, Iverson JT, Frank JG.
Science accommodations in the biomass
production system. SAE Technical Paper. 2001
July 9; 2001-01-2231: DOI: 10.4271/2001-01-
2231.*

Biomass Production System/
Photosynthesis Experiment and System
Testing and Operation (BPS/PESTO) —
Stryjewski EC, Peterson BV, Stutte GW, Wells
HW. Long-term storage of wheat plants for light
microscopy. SAE Technical Paper. 2000 July;
2000-01-2231: 7. DOI: 10.4271/2000-01-2231. *

BioScience-4 (STaARS BioScience-4) —
Biancotti JC, Carpo N, Zamudio J, Vergnes
L, Espinosa-Jeffrey A. Profiling the secretome
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of space traveler human neural stem cells.
Journal of Stem Cells Research, Development
& Therapy. 2022 June 10; 8(1): 1-12. DOI:
10.24966/SRDT-2060/100094.

BioScience-4 (STaARS BioScience-4) —
Tran V, Carpo N, Shaka S, Zamudio J, Choi SY,
et al. Delayed Maturation of Oligodendrocyte
Progenitors by Microgravity: Implications for
Multiple Sclerosis and Space Flight. Life. 2022
May 27; 12(6): 797. DOI: 10.3390/life12060797.

Characterization of Biofilm Formation,
Growth, and Gene Expression on Different
Materials and Environmental Conditions
in Microgravity (Space Biofilms) — Flores
P, Schauer R, McBride SA, Luo J, Hoehn CV,
et al. Preparation for and performance of a
Pseudomonas aeruginosa biofilm experiment
on board the International Space Station.

Acta Astronautica. 2022 July 14; 25pp. DOI:
10.1016/j.actaastro.2022.07.015.

Commercial Biomedical Test Module -

2 (CBTM-2) — Ortega AM, Bateman TA,
Livingston EW, Paietta RC, Gonzalez SM, et
al. Spaceflight related changes in structure
and strength of mouse trabecular and cortical
bone from the STS-118 space shuttle mission.
ASME 2013 Summer Bioengineering
Conference, Sunriver, Oregon; 2013 June 26-
29. VO1ATO8A005. DOI: 10.1115/SBC2013-
14785. *

Crystalization of Biological Macromolecules
and Generation of Biocrystal Film in the
Conditions of Microgravity (Kristallizator)

— Eistrikh-Heller PA, Rubinsky SV, Samygina
VR, Gabdulkhakov AG, Kovalchuk MV, et al.
Crystallization in microgravity and the atomic-
resolution structure of uridine phosphorylase
from Vibrio cholerae. Crystallography Reports.
2021 September 1; 66(5): 777-785. DOI:
10.1134/S1063774521050059. *
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Crystalization of Biological Macromolecules
and Generation of Biocrystal Film in the
Conditions of Microgravity (Kristallizator)
— Timofeev VI, Abramchik YA, Muravyova
Tl, Zhukhlistova NE, Esipov RS, et al.
Three-dimensional structure of recombinant
thermophilic ribokinase from Thermus
species 2.9 in complex with adenosine
diphosphate. Crystallography Reports. 2021
September 1; 66(5): 769-776. DOI: 10.1134/
S1063774521050205. *

Effects of Microgravity on Cerebral
Arterial, Venous and Lymphatic Function:
Implications for Elevated Intracranial
Pressure (Delp Intracranial Pressure) —
Holley JM, Stanbouly S, Pecaut MJ, Willey
JS, Delp MD, et al. Characterization of gene
expression profiles in the mouse brain after 35
days of spaceflight mission. npj Microgravity.
2022 August 10; 8(1): 1-10. DOI: 10.1038/
s41526-022-00217-4.

Effects of Microgravity on Stem Cell-
Derived Heart Cells (Heart Cells) — Cao

X, Weil MM, Wu JC. Clinical trial in a dish for
space radiation countermeasure discovery. Life
Sciences in Space Research. 2022 May; DOI:
10.1016/j.1ssr.2022.05.006.

Epigenetic change in Arabidopsis thaliana
in response to spaceflight - differential
cytosine DNA methylation of plants on

the ISS/Biological Research In Canisters/
Molecular Biology of Plant Development in
the Space Flight Environment (APEX-04/
BRIC/CARA/Seeding Growth-1/2/3) —
Manzano A, Carnero-Diaz E, Herranz R, Medina
F. Recent transcriptomic studies to elucidate the
plant adaptive response to spaceflight and to
simulated space environments. iScience. 2022
June 30; DOI: 10.1016/j.isci.2022.104687. T

Epigenetic change in Arabidopsis thaliana
in response to spaceflight - differential
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cytosine DNA methylation of plants on the
ISS (APEX-04) — Paul AL, Haveman NJ, Califar
B, Ferl RJ. Epigenomic regulators elongator
complex subunit 2 and methyltransferase 1
differentially condition the spaceflight response
in Arabidopsis. Frontiers in Plant Science. 2021
September 13; 12: 691790. DOI: 10.3389/
fpls.2021.691790. *

Evaluation of Radiotrophic Fungi as a
Potential Radiation Barrier (Evaluation of
Radiotrophic Fungi as a Potential Radiation
Barrier) — Averesch NJ, Shunk GK, Kern

C. Cultivation of the dematiaceous fungus
Cladosporium sphaerospermum aboard the
International Space Station and effects of
ionizing radiation. Frontiers in Microbiology.
2022; 13: DOI: 10.3389/fmicb.2022.877625.

EuTEF-Expose-Protect — Waters SM,
Ledford SM, Wacker A, Verma S, Serda B, et

al. Long-read sequencing reveals increased
occurrence of genomic variants and adenosine
methylation in Bacillus pumilus SAFR-032

after long-duration flight exposure onboard

the International Space Station. International
Journal of Astrobiology. 2021 December; 20(6):
435-444, DOI: 10.1017/S1473550421000343.

Exercise Countermeasures for Knee and
Hip Joint Degeneration during Spaceflight
(Willey Gait) — Willey JS, Aunon-Chancellor
SM, Miles LA, Moore JE, Mao XW, et al. aKlotho
decreases after reduced weight-bearing from
both spaceflight and hindlimb unloading. npj
Microgravity. 2022 June 2; 8(1): 18. DOI:
10.1038/541526-022-00203-w.

GeneLAB — Manian V, Orozco-Sandoval

J, Diaz-Martinez V. An integrative network
science and artificial intelligence drug
repurposing approach for muscle atrophy in
spaceflight microgravity. Frontiers in Cell and
Developmental Biology. 2021; 9: 732370. DOI:
10.3389/fcell.2021.732370. *
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GeneLAB — Manian V, Orozco-Sandoval

J, Diaz-Martinez V, Janwa H, Agrinsoni C.
Detection of target genes for drug repurposing
to treat skeletal muscle atrophy in mice flown
in spaceflight. Genes. 2022 March; 13(3): 473.
DOI: 10.3390/genes13030473.

Generation of Cardiomyocytes from
Human Induced Pluripotent Stem Cell-
derived Cardiac Progenitors Expanded
in Microgravity (MVP Cell-03) — Rampoldi
A, Forghani P, Li D, Hwang H, Armand LC, et
al. Space microgravity improves proliferation
of human iPSC-derived cardiomyocytes.
Stem Cell Reports. 2022 August 7;
S$2213-6711(22)00416-7. DOI: 10.1016/].
stemcr.2022.08.007.

Growth of Large, Perfect Protein

Crystals for Neutron Crystallography
(Perfect Crystals) — Azadmanesh J, Lutz

WE, Coates L, Weiss KL, Borgstahl GE.
Cryotrapping peroxide in the active site of
human mitochondrial manganese superoxide
dismutase crystals for neutron diffraction. Acta
Crystallographica Section F: Structural Biology
Communications. 2022 January 1; 78(1): DOI:
10.1107/S2053230X21012413.

Identifying the Genetic Features
Determining Individual differences in the
Resilience of Biological Objects to Long-
term Spaceflight Factors Studies with the
Fruit Fly Drosophila melanogaster (Poligen
(Polygene)) — Ogneva IV, Zhdankina YS, Kotov
QOV. Sperm of fruit fly Drosophila melanogaster
under space flight. International Journal of
Molecular Sciences. 2022 July 6; 23(14): 7498.
DOI: 10.3390/ijms23147498.

International Space Station-Microbial
Observatory of Pathogenic Viruses,
Bacteria, and Fungi (ISS-MOP) Project
(Microbial Tracking-2) — Madrigal P, Singh
NK, Wood JM, Gaudioso E, Hernandez-del-
Olmo F, et al. Machine learning algorithm to
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characterize antimicrobial resistance associated
with the International Space Station surface
microbiome. Microbiome. 2022 August 24;
10(1): 134. DOI: 10.1186/s40168-022-01332-w.

International Space Station-Microbial
Observatory of Pathogenic Viruses,
Bacteria, and Fungi (ISS-MOP) Project
(Microbial Tracking-2) — Simpson AC,
Urbaniak C, Bateh JR, Singh NK, Wood JM, et
al. Draft genome sequences of fungi isolated
from the International Space Station during the
Microbial Tracking-2 experiment. Microbiology
Resource Announcements. 2021 September
16; 10(37): e00751-21. DOI: 10.1128/
MRA.00751-21. *

International Space Station-Microbial
Observatory of Pathogenic Viruses,
Bacteria, and Fungi (ISS-MOP) Project
(Microbial Tracking-2) — Urbaniak C,
Morrison MD, Thissen J, Karouia F, Smith DJ,

et al. Microbial Tracking-2, a metagenomics
analysis of bacteria and fungi onboard the
International Space Station. Microbiome. 2022
June 29; 10(1): 100. DOI: 10.1186/s40168-022-

01293-0.

International Space Station Summary

of Research Performed (ISS Summary

of Research) — Alekseev VR, Hwang J,
Levinskikh MA. Effect of space flight factor on
dormant stages in aquatic organisms: A review
of International Space Station and terrestrial
experiments. Life. 2022 January; 12(1): 47. DOI:
10.3390/life12010047.

International Space Station Summary

of Research Performed (ISS Summary

of Research) — Goldsmith M, Crooks SD,
Condon SF, Willie BM, Komarova SV. Bone
strength and composition in spacefaring
rodents: systematic review and meta-analysis.
npj Microgravity. 2022 April 13; 8(1): 1-14. DOI:
10.1038/541526-022-00195-7.
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International Space Station Summary of
Research Performed (ISS Summary of
Research) — Paul AL, Wheeler RM, Levine HG,
Ferl RJ. Fundamental plant biology enabled by
the space shuttle. American Journal of Botany.
2013 January 1; 100(1): 226-234. DOI: 10.3732/

Japan Aerospace Exploration Agency
Protein Crystallization Growth/ Japan
Aerospace and Exploration Agency -
Granada Crystallization Facility High Quality
Protein Crystallization Project (JAXA PCG/
JAXA-GCF) — Obita T, Inaka K, Kohda D,

ajb.1200338. *

International Space Station Summary of
Research Performed (ISS Summary of
Research) — Pavletic B, Runzheimer K, Siems
K, Koch S, Cortesao M, et al. Spaceflight
virology: What do we know about viral threats
in the spaceflight environment? Astrobiology.
2022 January 3; 22(2): ast.2021.0009. DOI:
10.1089/ast.2021.0009.

Investigation of the Osteoclastic and
Osteoblastic Responses to Microgravity
Using Goldfish Scales (Fish Scales) —
Yamamoto T, Ikegame M, Furusawa Y, Tabuchi
Y, Hatano K, et al. Osteoclastic and osteoblastic
responses to hypergravity and microgravity:
Analysis using goldfish scales as a bone model.
Zoological Science. 2022 April; 39(4): 9pp. DOI:
10.2108/2zs210107.

Investigation of the Osteoclastic and
Osteoblastic Responses to Microgravity
Using Goldfish Scales (Fish Scales) — Yano
S. Preparation and overview of Fish Scales
experiment. Space Utilization Research; 2011
March. 213-216.

Japan Aerospace Exploration Agency
Protein Crystallization Growth / High
Quality Protein Crystal Growth (JAXA
PCG/PCG Kristallizator) — Boyko KM,
Gorbacheva MA, Rakitina TV, Korzhenevskiy
DA, Dorovatovsky PV, et al. Identification of
the ligand in the structure of the protein with
unknown function STM4435 from Salmonella
typhimurium. Doklady Biochemistry and
Biophysics. 2014 July; 457(1): 121-124. DOI:
10.1134/S1607672914040012. *
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Maita N. Crystal structure of the PX domain of
Vps17p from Saccharomyces cerevisiae. Acta
Crystallographica Section F: Structural Biology
Communications. 2022 May 1; 78(5): 210-216.
DOI: 10.1107/S2053230X22004472.

Japan Aerospace Exploration Agency
Protein Crystallization Growth (JAXA PCG)
— Rahman RN, Ali MS, Sugiyama S, Leow

AT, Inoue T, et al. A comparative analysis of
microgravity and Earth grown thermostable T1
lipase crystals using HDPCG apparatus. Protein
and Peptide Letters. 2015 February; 22(2): 173-
179. DOI: 10.2174/092986652166614101919
3604. *

JAXA Mouse Habitat Unit (JAXA Mouse
Habitat Unit) — Ohira T, Ino Y, Kimura Y,
Nakai Y, Kimura A, et al. Effects of microgravity
exposure and fructo-oligosaccharide ingestion
on the proteome of soleus and extensor
digitorum longus muscles in developing mice.
npj Microgravity. 2021 September 17; 7(1):
1-11. DOI: 10.1038/541526-021-00164-6.
DOI:10.1038/s41526-021-00164-6 *

Mechanisms of Gravity Resistance in
Plants From Signal Transformation and
Transduction to Response (Resist Tubule)
— Kato S, Murakami M, Saika R, Soga K,
Wakabayashi K, et al. Suppression of cortical
microtubule reorientation and stimulation

of cell elongation in Arabidopsis hypocotyls
under microgravity conditions in space. Plants.
2022 January; 11(3): 465. DOI: 10.3390/

plants11030465.
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Mechanisms of Gravity Resistance

in Plants From Signal Transformation

and Transduction to Response (Resist
Tubule) — Tanimura Y, Mabuchi A, Soga

K, Wakabayashi K, Hashimoto H, et al.
Suppression of secondary wall formation in
the basal supporting region of Arabidopsis
inflorescence stems under microgravity
conditions in space. Biological Sciences in
Space. 2022; 36: 1-8. DOI: 10.2187/bss.36.1.

Microbial Tracking Payload Series
(Microbial Observatory-1) — Kumar RK,
Singh NK, Balakrishnan S, Parker CW, Raman
K, et al. Metabolic modeling of the International
Space Station microbiome reveals key microbial
interactions. Microbiome. 2022 July 6; 10(1):
102. DOI: 10.1186/s40168-022-01279-y.

Microbial Tracking Payload Series
(Microbial Observatory-1) — Lombardino J,

Mice Drawer System (MDS) — Ishihara

A, Nagatomo F, Fujino H, Kondo H, Ohira Y.
Decreased succinate dehydrogenase activity
of gamma and alpha motoneurons in mouse
spinal cords following 13 weeks of exposure to
microgravity. Neurochemical Research. 2013
August 14; 38: 2160-2167. DOI: 10.1007/
s11064-013-1124-y. *

Microbial Tracking Payload Series
(Microbial Observatory-1) — Blachowicz

A, Romsdahl J, Chiang AJ, Masonjones S,
Kalkum M, et al. The International Space

Station environment triggers molecular
responses in Aspergillus niger. Frontiers in
Microbiology. 2022; 13: 893071. DOI: 10.3389/
fmicb.2022.893071.

Microbial Tracking Payload Series
(Microbial Observatory-1) — Bijlani S,
Parker CW, Singh NK, Sierra MA, Foox J, et al.
Genomic characterization of the Titan-like cell
producing Naganishia tulchinskyi, the first novel
eukaryote isolated from the International Space
Station. Journal of Fungi. 2022 February; 8(2):
165. DOI: 10.3390/j0f8020165.

Microbial Tracking Payload Series
(Microbial Observatory-1) — Danko DC,
Mohan GB, Sierra MA, Rucker MA, Singh NK,
et al. Characterization of spacesuit associated
microbial communities and their implications
for NASA missions. Frontiers in Microbiology.
2021 July 29; 12: 27pp. DOI: 10.3389/
fmicb.2021.608478. *
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Bijlani S, Singh NK, Wood JM, Barker RJ, et
al. Genomic characterization of potential plant
growth-promoting features of Sphingomonas
strains isolated from the International Space
Station. Microbiology Spectrum. 2022
January 12; eoub: e0199421. DOI: 10.1128/
spectrum.01994-21.

Microbial Tracking Payload Series
(Microbial Observatory-1) — Singh NK, Lavire
C, Nesme J, Vial L, Nesme X, et al. Comparative
genomics of novel Agrobacterium G3 strains
isolated from the International Space Station and
description of Agrobacterium tomkonis sp. nov.
Frontiers in Microbiology. 2021 December 6;
12: 765943. DOI: 10.3389/fmicb.2021.765943.

Microbial Tracking Payload Series
(Microbial Observatory-1) — Sushenko NS,
Singh NK; Vellone DL, Tighe SW, Hedlund BP,
et al. Complete genome sequence of Klebsiella
quasipneumoniae subsp. similipneumoniae
strain IF3SW-P1, isolated from the International
Space Station. Microbiology Resource
Announcements. 2022 June 23; e0047622.
DOI: 10.1128/mra.00476-22.

Microbial Tracking Payload Series
(Microbial Observatory-1) — Urbaniak

C, Grams T, Mason CE, Venkateswaran KJ.
Simulated microgravity promotes horizontal
gene transfer of antimicrobial resistance
genes between bacterial genera in the
absence of antibiotic selective pressure. Life.
2021 September; 11(9): 960. DOI: 10.3390/
life11090960. *
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Microgravity Crystal Growth for
Improvement in Neutron Diffraction

and the Analysis of Protein Complexes/
Improving the Quality of Taspase1
Crystals by Microgravity (CASIS PCG 15/
CASIS PCG 18) — Drago VN, Devos JM,
Blakeley MP, Forsyth VT, Kovalevsky AY, et al.
Microgravity crystallization of perdeuterated
tryptophan synthase for neutron diffraction.
npj Microgravity. 2022 May 4; 8(1): 13. DOI:
10.1038/s541526-022-00199-3.

Molecular Muscle/ Epigenetics in
spaceflown C. elegans/ RNA Interference
and Protein Phosphorylation in Space
Environment Using the Nematode
Caenorhabditis elegans (Molecular Muscle/
Epigenetics/CERISE) — Sudevan S, Muto K,
Higashitani N, Hashizume T, Higashibata A, et
al. Loss of physical contact in space alters the
dopamine system in C. elegans. iScience. 2022
February 18; 25(2): 103762. DOI: 10.1016/].
isci.2022.103762.

Mouse Antigen-Specific CD4+ T Cell
Priming and Memory Response during
Spaceflight (Mouse Immunology) —
Siamwala JH, Macias BR, Healey RM, Bennett
B, Hargens AR. Spaceflight-associated vascular
remodeling and gene expression in mouse
calvaria. Frontiers in Physiology. 2022 May 13;
13: 893025. DOI: 10.3389/fphys.2022.893025.

and Study of Possible Countermeasures
(MYOGRAVITY) — Di Filippo ES, Chiappalupi
S, Balsamo M, Vukich M, Sorci G, et al.
Preparation of human muscle precursor cells for
the MyoGravity project’s study of cell cultures

in experiment units for space flight purposes.
Applied Sciences. 2022 January; 12(14): 7013.
DOI: 10.3390/app12147018.

Multi-use Variable-g Platform Fly-01 (MVP
Fly-01) — Mhatre SD, lyer J, Petereit J, Dolling-
Boreham R, Tyryshkina A, et al. Artificial gravity
partially protects space-induced neurological
deficits in Drosophila melanogaster. Cell
Reports. 2022 September 6; 40(10): 111279.
DOI: 10.1016/j.celrep.2022.111279.

NanoRacks-CellBox-Effect of Microgravity
on Human Thyroid Carcinoma Cells
(NanoRacks-CellBox-Thyroid Cancer)

— Wise PM, Neviani P, Riwaldt S, Corydon

TJ, Wehland M et al. Changes in exosomal
miRNA composition in thyroid cancer cells
after prolonged exposure to real microgravity

in space. International Journal of Molecular
Sciences. 2021 November 27; 22(23): 12841.
DOI: 10.3390/ijms222312841.

Phase Il Real-time Protein Crystal Growth
on Board the International Space Station
(Real-Time Protein Crystal Growth-2
(RTPCG-2)) — Quirk S, Lieberman RL.

Mouse Antigen-Specific CD4+ T Cell
Priming and Memory Response during
Spaceflight (Mouse Immunology) —
Sultemeier DR, Choy KR, Schweizer FE,
Hoffman LF. Spaceflight-induced synaptic
modifications within hair cells of the mammalian
utricle. Journal of Neurophysiology. 2017
June 1; 117(6): 2163-2178. DOI: 10.1152/

in.00240.2016. *

Multidisciplinary Approach to the Analysis
of the Functional Alterations Induced by
Microgravity in Human Satellite Cells,
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Improved resolution crystal structure of
Acanthamoeba actophorin reveals structural
plasticity not induced by microgravity. Acta
Crystallographica Section F: Structural Biology
Communications. 2021 December 1; 77(Pt 12):
452-458. DOI: 10.1107/S2053230X21011419.

Plant Signaling (formerly known as Seed
Growth-1) — Sheppard J, Land ES, Toennisson
TA, Doherty CJ, Perera IY. Uncovering
transcriptional responses to fractional gravity in
Arabidopsis roots. Life. 2021 October; 11(10):
1010. DOI: 10.3390/life11101010.
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Quantifying Selection for Pathogenicity and
Antibiotic Resistance in Bacteria and Fungi
on the ISS - a Microbial Tracking Study
(Microbial Tracking-3) — Simpson AC, Suzuki
T, Miller DR, Venkateswaran KJ. Microbial burden
estimation of food items, built environments, and
the International Space Station using film media.
Microorganisms. 2022 September; 10(9): 1714.
DOI: 10.3390/microorganisms10091714.

Rodent Research Hardware and Operations
Validation (Rodent Research-1) — Rettig

TA, Nishiyama NC, Pecaut MJ, Chapes SK.
Effects of skeletal unloading on the bone marrow
antibody repertoire of tetanus toxoid and/or CpG
treated C57BL/6J mice. Life Sciences in Space
Research. 2019 August 1; 22: 16-28. DOI:
10.1016/j.Issr.2019.06.001. *

Role of Environmental Stress-responsive
Transcription Factor Nrf2 in Space Stress
(Mouse Habitat Unit-3 (Mouse Stress
Defense)) — Suzuki N, Iwamura Y, Nakai

T, Kato K, Otsuki A, et al. Gene expression
changes related to bone mineralization, blood
pressure and lipid metabolism in mouse kidneys
after space travel. Kidney International. 2021
November 9; DOI: 10.1016/j.kint.2021.09.031.

Role of Environmental Stress-responsive
Transcription Factor Nrf2 in Space Stress
(Mouse Habitat Unit-3 (Mouse Stress
Defense)) — Uruno A, Saigusa D, Suzuki T,
Yumoto A, Nakamura T, et al. Nrf2 plays a critical
role in the metabolic response during and after
spaceflight. Communications Biology. 2021
December 9; 4(1): 1-18. DOI: 10.1038/s42003-
021-02904-6.

Seedling Growth-1/Seedling Growth-2 —
Shymanovich T, Vandenbrink JP, Herranz R,
Medina F, Kiss JZ. Spaceflight studies identify a
gene encoding an intermediate filament involved
in tropism pathways. Plant Physiology and
Biochemistry. 2022 January 15; 171: 191-200.
DOI: 10.1016/j.plaphy.2021.12.039.

Stem Cell Differentiation — Wang Y, Jia Y, Xu
Y, Liu X, Wang Z, et al. Exploring the association
between glutathione metabolism and ferroptosis
in osteoblasts with disuse osteoporosis and the
key genes connecting them. Computational
and Mathematical Methods in Medicine.

2022 May 12; 2022: e4914727. DOI:
10.1155/2022/4914727 .

Study on the Effect of Space Environment to
Embryonic Stem Cells to Their Development
(Stem Cells) — Yoshida K, Hada M, Kizu A,
Kitada K, Eguchi-Kasai K, et al. Comparison of
biological measurement and physical estimates
of space radiation in the International Space
Station. Heliyon. 2022 August 1; 8(8): e10266.
DOI: 10.1016/j.heliyon.2022.e10266.

Studying the Features of the Growth and
Development of Plants, and Technology for
their Culturing in Spaceflight on the ISS RS
(Rastenia-Gorokh (Plants-Pea)) — Podolski
IG, Strugov OM, Bingham GE. [Performance
characteristics of root zone moisture and

water potential sensors for greenhouses

in the conditions of extended space flight].
Aviakosmicheskaia i Ekologicheskaia Meditsina
(Aerospace and Environmental Medicine).
2014; 48(5): 39-45. *

Systemic Therapy of NELL-1 for
Osteoporosis (Rodent Research-5 (RR-5))
— Henrich M, Ha P, Wang Y, Ting K, Stodieck
LS, et al. Alternative splicing diversifies the
skeletal muscle transcriptome during prolonged
spaceflight. Skeletal Muscle. 2022 May 31;
12(1): 11. DOI: 10.1186/513395-022-00294-9.

The Coenzyme Q10 (CoQ10) as an
Antiapoptotic Countermeasure for

Retinal Lesions Induced by Radiation and
Microgravity on the ISS: Experiment on
Cultured Retinal Cells (CORM) — Cialdai F,
Bolognini D, Vignali L, lannotti N, Cacchione S,
et al. Effect of space flight on the behavior of
human retinal pigment epithelial ARPE-19 cells
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and evaluation of coenzyme Q10 treatment.
Cellular and Molecular Life Sciences. 2021
October 29; DOI: 10.1007/s00018-021-03989-2,

The Effect of Macromolecular Transport

of Microgravity Protein Crystallization
(LMM Biophysics 1) — Martirosyan A,

Falke S, McCombs D, Cox M, Radka C, et

al. Tracing transport of protein aggregates in
microgravity versus unit gravity crystallization.
npj Microgravity. 2022 February 17; 8(1): 1-12.
DOI: 10.1038/s41526-022-00191 -x.

Threshold Acceleration for Gravisensing

- 2 (Gravi-2) — Karoliussen |, Coelho LH,
Hauan M. Integration and pre-experiment test
flow of the Gravi2 experiment performed in the
EMCS: From ground testing to space flight.
AIAA SPACE 2016, Long Beach, CA; 2016
September 9. 11pp. DOI: 10.2514/6.2016-
5611. *

Tissue Regeneration-Bone Defect (Rodent
Research-4 (CASIS)) — Zamarioli A, Adam

G, Maupin KA, Childress PJ, Brinker A, et al.
Systemic effects of BMP2 treatment of fractures
on non-injured skeletal sites during spaceflight.
Frontiers in Endocrinology. 2022 August 15;
13: 910901. DOI: 10.3389/fendo.2022.910901.

Utilization of the micro gravity condition to
examine the cellular process of formation
of the gravity sensor and the molecular
mechanism of gravity sensing (Plant
Gravity Sensing) — Nakano M, Furuichi T,
Sokabe M, lida H, Yano S, et al. Entanglement
of Arabidopsis seedlings to a mesh substrate
under microgravity conditions in KIBO on the
ISS. Plants. 2022 March 31; 11(7): 956. DOI:
10.3390/plants11070956.

Veg-03 I/J/K/L (Veg-03) — Hummerick ME,
Khodadad CL, Dixit AR, Spencer LE, Maldonado
Vazquez GJ, et al. Spatial characterization of
microbial communities on multi-species leafy
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greens grown simultaneously in the vegetable
production systems on the International Space
Station. Life. 2021 October; 11(10): 1060. DOI:
10.3390/life11101060.

Vegetable Production System (Veggie)

— Poulet L, Zeidler C, Buncheck JM, Zabel

P, Vrakking V, et al. Crew time in a space
greenhouse using data from analog missions
and Veggie. Life Sciences in Space Research.
2021 November; 31: 101-112. DOI: 10.1016/].
Issr.2021.08.002.

Veggie hardware validation test (Veg-01)
— Haveman NJ, Schuerger AC. Diagnosing an
opportunistic fungal pathogen on spaceflight-
grown plants using the MinlON sequencing
platform. Astrobiology. 2021 November 18;
22(1): DOI: 10.1089/ast.2021.0049.

Veggie PONDS (Veggie PONDS Validation)
— Levine HG, Richards JT, Koss LL, Weislogel
MM, Reed DW, et al. PONDS : A new method
for plant production in space. In-Space
Manufacturing and Resources; 2022. DOI:
10.1002/9783527830909.ch12.
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HUMAN RESEARCH

Advanced Resistive Exercise Device/
Bisphosphonates as a Countermeasure
to Space Flight Induced Bone Loss
(ARED/Bisphosphonates) — Okada A,
Matsumoto T, Ohshima H, Isomura T, Koga
T, et al. Bisphosphonate use may reduce the
risk of urolithiasis in astronauts on long-term
spaceflights. JBMR Plus. 2022 January; 6(1):
e10550. DOI: 10.1002/jom4.10550.

Assessing the Impact of Communication
Delay on Behavioral Health and
Performance: An Examination of
Autonomous Operations Utilizing the
International Space Station (Comm Delay
Assessment) — Kintz NM, Palinkas LA.
Communication delays impact behavior and
performance aboard the International Space
Station. Aerospace Medicine and Human
Performance. 2016; 87(11): 940-946. DOI:
10.3357/AMHP.4626.2016. *

Assessment of the effect of space flight on
bone quality using three-dimensional high
resolution peripheral quantitative computed
tomography (HR-pQCT) (TBone) — Gabel

L, Liphardt A, Hulme PA, Heer MA, Zwart SR,

et al. Incomplete recovery of bone strength and
trabecular microarchitecture at the distal tibia 1
year after return from long duration spaceflight.
Scientific Reports. 2022 June 30; 12(1): 9446.
DOI: 10.1038/s41598-022-13461-1.

Astronaut’s Energy Requirements for Long-
Term Space Flight (Energy) — Bourdier P,
Zahariev A, Schoeller DA, Chery |, LeRoux E, et
al. Effect of exercise on energy expenditure and
body composition in astronauts onboard the
International Space Station: Considerations for
interplanetary travel. Sports Medicine. 2022 July
13; DOI: 10.1007/s40279-022-01728-6.
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Biochemical Profile/ Nutritional Status
Assessment/ Dietary Intake Can Predict
and Protect Against Changes in Bone
Metabolism during Spaceflight and
Recovery/Spaceflight Standard Measures
(Biochem Profile/Nutrition/Pro K/Standard
Measures) — Zwart SR, Aunon-Chancellor SM,
Heer MA, Melin MM, Smith SM. Albumin, oral
contraceptives, and venous thromboembolism
risk in astronauts. European Journal of Applied
Physiology. 2022 April 7; 29pp. DOI: 10.1152/
japplphysiol.00024.2022.

Brain-DTI (Brain-DTI) — Barisano G,
Sepehrdand F, Collins HR, Jillings S, Jeurissen
B, et al. The effect of prolonged spaceflight on
cerebrospinal fluid and perivascular spaces

of astronauts and cosmonauts. Proceedings
of the National Academy of Sciences of

the United States of America. 2022 April

26; 119(17): e2120439119. DOI: 10.1073/
pnas.2120439119.

Brain-DTI (Brain-DTI) — Doroshin A, Jillings
S, Jeurissen B, Tomilovskaya ES, Pechenkova
E, et al. Brain connectometry changes in
space travelers after long-duration spaceflight.
Frontiers in Neural Circuits. 2022 February 18;
16: DOI: 10.3389/fncir.2022.815838.

Content — Yusupova AK, Supolkina NS, Shved
DM, Gushin VI, Nosovsky AM, et al. Subjective
perception of time in space flights and analogs.
Acta Astronautica. 2022 April 18; 11pp. DOI:
10.1016/j.actaastro.2022.04.016.

Effect of Gravitational Context on EEG
Dynamics: A Study of Spatial Cognition,
Novelty Processing and Sensorimotor
Integration (Neurospat) — Cebolla AM,
Petieau M, Palmero-Soler E, Cheron G. Brain
potential responses involved in decision-making
in weightlessness. Scientific Reports. 2022 July
29; 12(1): 12992. DOI: 10.1038/s41598-022-
17234-8.
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Effects of Long-Duration Microgravity on
Fine Motor Skills: 1 year ISS Investigation
(Fine Motor Skills) — Holden K, Greene
MR, Vincent E, Sandor A, Thompson S,

et al. Effects of long-duration microgravity
and gravitational transitions on fine motor
skills. Human Factors. 2022 May 24; DOI:
10.1177/00187208221084486.

ELaboratore Immagini TElevisive - Space 2
Facility (ELITE-S2 Facility) — Neri G, Mascetti
G, Zolesi V. ELITE S2 — A facility for quantitative
human movement analysis on board the ISS.
Microgravity Science and Technology. 2014
November; 26(4): 271-278. DOI: 10.1007/
$12217-014-9396-7. *

ETD-ROSCOSMOS/Otolith Assessment
During Postflight Re-adaptation (Otolith)
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Inatomi Y, et al. A numerical study on the growth
process of INGaSb crystals under microgravity
with interfacial kinetics. Microgravity Science
and Technology. 2015 September 1; 27(5):
3183-320. DOI: 10.1007/s12217-015-9417-1. *

Crystal Growth of Alloy Semiconductor
Under Microgravity (Alloy Semiconductor)
— Sakata K, Mukai M, Arivanandhan M, Rajesh
G, Ishikawa T, et al. Crystal growth of ternary
alloy semiconductor and preliminary study for
microgravity experiment at the International
Space Station. Transactions of the Japan
Society for Aeronautical and Space Sciences,

Aerospace Technology Japan. 2014; 12(ists29):

Ph_31-Ph_35. DOI: 10.2322/tastj.12.Ph 31. *
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Electromagnetic Levitator (EML) — Lohoefer
G, Xiao X. Residual fluid flow in liquid metallic
droplets processed in the space station
electromagnetic levitation facility. Physics

of Fluids. 2022 July; 34(7): 077114. DOI:
10.1063/5.0096768

Electromagnetic Levitator (EML) —
Wunderlich RK, Mohr M, Dong Y, Hecht U,
Matson DM, et al. Thermophysical properties

of the TiAI-2Cr-2Nb alloy in the liquid phase
measured with an electromagnetic levitation
device on board the International Space Station,
ISS-EML. International Journal of Materials
Research. 2021 October 1; 112(10): 770-781.
DOI: 10.1515/ijmr-2021-8266.
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Electromagnetic Levitator Batch 2 -
Investigation of Thermophysical Properties
of Liquid Semiconductors in the Melt and in
the Undercooled State under Microgravity
Conditions (EML Batch 2 - SEMITHERM) —
Luo Y, Damaschke B, Schneider S, Lohoefer G,
Abrosimov N, et al. Contactless processing of
SiGe-melts in EML under reduced gravity. npj
Microgravity. 2016 December 16; 2(1): 1-9.
DOI: 10.1038/s41526-016-0007-3. *

Electrostatic Levitation Furnace (ELF) —
Ishikawa T, Koyama C, Oda H, Saruwatari H,
Paradis P. Status of the Electrostatic Levitation
Furnace in the ISS - Surface tension and
viscosity measurements. International Journal
of Microgravity Science and Application. 2022
January 31; 39(1): 390101. DOI: 10.15011/
jasma.39.390101.

Electrostatic Levitation Furnace (ELF) —
Ishikawa T, Koyama C, Oda H, Shimonishi

R, Ito T, Paradis P. Densities of liquid Tm,O,,
Yb,0O,, and Lu,O, measured by an electrostatic
levitation furnace onboard the International
Space Station. Metals. 2022 July; 12(7): 1126.
DOI: 10.3390/met12071126.

Electrostatic Levitation Furnace (ELF) —
Yoshida K, Kumagai H, Yamane T, Hayashi A,
Koyama C, et al. Thermophysical properties
of molten Ga, O, by using the electrostatic
levitation furnace in the International Space
Station. Applied Physics Express. 2022; DOI:
10.35848/1882-0786/ac7fdd.

Elucidation of Flame Spread and Group
Combustion Excitation Mechanism of
Randomly-distributed Droplet Clouds
(Group Combustion) — Mikami M, Matsumoto
K, Chikami Y, Kikuchi M, Dietrich DL.
Appearance of cool flame in flame spread over
fuel droplets in microgravity. Proceedings of the
Combustion Institute. 2022 August 18; 1-11.
DOI: 10.1016/j.proci.2022.07.053.
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Elucidation of Flame Spread and Group
Combustion Excitation Mechanism of
Randomly-distributed Droplet Clouds
(Group Combustion) — Mikami M, Nomura
H, Suganuma Y, Kikuchi M, Suzuki T, et al.
Generation of a large-scale n-decane-droplet
cloud considering droplet pre-vaporization in
“Group Combustion” experiments aboard Kibo/
ISS. International Journal of Microgravity
Science and Application. 2018 April 30; 35(2):
350202. DOI: 10.15011//jasma.35.350202. *

Elucidation of Flame Spread and Group
Combustion Excitation Mechanism of
Randomly-distributed Droplet Clouds
(Group Combustion) — Mikami M, Yoshida
Y, Seo T, Moriue O, Sakashita T, et al. Recent
accomplishment of “Group Combustion”
experiments aboard Kibo on ISS. International
Journal of Microgravity Science and
Application. 2019 July; 36(3): 360301. DOI:
10.15011//jasma.36.360301. *

Elucidation of Flame Spread and Group
Combustion Excitation Mechanism of
Randomly-distributed Droplet Clouds
(Group Combustion) — Kikuchi M, Kan
Y. Hardware development, preparation,
and execution of the “Group Combustion”
experiment. International Journal of
Microgravity Science and Application.
2019 July; 36(3): 360302. DOI: 10.15011//
jasma.36.360302. *

Elucidation of Flame Spread and Group
Combustion Excitation Mechanism of
Randomly-distributed Droplet Clouds
(Group Combustion) — Yoshida Y, Sano

N, Seo T, Mikami M, Moriue O, et al. Analysis
of local flame-spread characteristics of an
unevenly arranged droplet cloud in microgravity.
International Journal of Microgravity Science
and Application. 2018 April 30; 35(2): 3502083.
DOI: 10.15011//jasma.35.350203. *
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EML Batch 1 - NEQUISOL Experiment
(EML Batch 1 - NEQUISOL Experiment)

— Herlach DM. Non-Equilibrium Solidification

of Undercooled Metallic Melts. Institut fur
Materialphysik im Weltraum, Deutsches Zentrum
fr Luft- und Raumfahrt, DLR, Kéln 51147,
Germany, Metals. 2014, 4(2), 196-234 DOI:
10.3390/met4020196 *

EML Batch 1 - NEQUISOL Experiment

(EML Batch 1 - NEQUISOL Experiment) —
Reinartz M, Kolbe M, Herlach DM, Rettenmayr
M, Toropova LV, et al. Study on anomalous rapid
solidification of Al-35 at%Ni in microgravity. JOM
(Journal of the Minerals, Metals and Materials
Society). 2022 January 12; 8pp. DOI: 10.1007/
s$11837-021-05098-8.

EML Batch 1 - THERMOLAB Experiment
(EML Batch 1 - THERMOLAB Experiment)

Flame Extinguishment Experiment - 2
(FLEX-2) — Rasul RB, Avedisian CT, Xu Y,
Hicks MC, Reeves AP. Dynamic differential
image circle diameter measurement precision
assessment: Application to burning droplets.
IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2022; 1-1. DOI: 10.1109/
TPAMI.2022.3170926.

Flow Boiling Condensation Experiment
(FBCE) — Darges SJ, Devahdhanush VS,
Mudawar |, Nahra HK, Balasubramaniam R,
et al. Experimental results and interfacial lift-
off model predictions of critical heat flux for
flow boiling with subcooled inlet conditions
— In preparation for experiments onboard the
International Space Station. International
Journal of Heat and Mass Transfer. 2022
February 1; 183: 122241. DOI: 10.1016/].
ijheatmasstransfer.2021.122241.

— Lee J, Xiao X, Matson DM, Hyers RW.
Numerical prediction of the accessible
convection range for an electromagnetically
levitated Fe50C050 droplet in space.
Metallurgical and Materials Transactions B.
2015 February; 46: 199-207. DOI: 10.1007/
s11663-014-0178-9. *

EML Batch 1 - THERMOLAB Experiment
(EML Batch 1 - THERMOLAB Experiment)
— Xiao X, Brillo J, Lee J, Hyers RW, Matson
DM. Impact of convection on the damping of an
oscillating droplet during viscosity measurement
using the ISS-EML facility. npj Microgravity.
2021 October 5; 7(1): 1-7. DOI: 10.1038/
s41526-021-00166-4.

Flame Design — Irace PH, Waddell K,
Constales D, Kim M, Yablonsky G, et al. On the
existence of steady-state gaseous microgravity
spherical diffusion flames in the presence

of radiation heat loss. Proceedings of the
Combustion Institute. 2022 August 20; 9pp.
DOI: 10.1016/j.proci.2022.07.049.
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Flow Boiling Condensation Experiment
(FBCE) — Devahdhanush VS, Darges SJ,
Mudawar |, Nahra HK, Balasubramaniam R, et
al. Flow visualization, heat transfer, and critical
heat flux of flow boiling in Earth gravity with
saturated liquid-vapor mixture inlet conditions
— In preparation for experiments onboard the
International Space Station. International
Journal of Heat and Mass Transfer. 2022
August 15; 192: 122890. DOI: 10.1016/].
jheatmasstransfer.2022.122890.

Flow Boiling Condensation Experiment
(EBCE) — Devahdhanush VS, Mudawar

I. Subcooled flow boiling heat transfer in a
partially-heated rectangular channel at different
orientations in Earth gravity. International
Journal of Heat and Mass Transfer. 2022
October 1; 195: 123200. DOI: 10.1016/].
jheatmasstransfer.2022.123200.

Flow Boiling Condensation Experiment
(FBCE) — Devahdhanush VS, Mudawar |,
Nahra HK, Balasubramaniam R, Hasan MM,
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et al. Experimental heat transfer results and
flow visualization of vertical upflow boiling in
Earth gravity with subcooled inlet conditions
— In preparation for experiments onboard the
International Space Station. International
Journal of Heat and Mass Transfer. 2022
June 1; 188: 1226083. DOI: 10.1016/].
ijheatmasstransfer.2022.122603.

Flow Boiling Condensation Experiment
(FBCE) — Lee J, Mudawar |, Hasan MM,
Nahra HK, Mackey JR. Experimental and
computational investigation of flow boiling in
microgravity. International Journal of Heat and
Mass Transfer. 2022 February 1; 183: 122237.
DOl
10.1016/j.ijheatmasstransfer.2021.122237.

FSL Soft Matter Dynamics - Hydrodynamics
of Wet Foams/ FSL Soft Matter Dynamics

- Particle STAbilised Emulsions and Foams
(FSL Soft Matter Dynamics - FOAM/FSL
Soft Matter Dynamics — PASTA)— Born

P, Braibanti M, Cristofolini L, Cohen-Addad

S, Durian DJ, et al. Soft matter dynamics: A
versatile microgravity platform to study dynamics
in soft matter. Review of Scientific Instruments.
2021 December 1; 92(12): 124503. DOI:
10.1063/5.0062946.

Interfacial behaviors and Heat transfer
characteristics in Boiling Two-Phase Flow
(Two-Phase Flow) — Gomyo T, Asano H, Ohta
H, Shinmoto Y, Kawanami O, et al. Development
of Boiling and Two-Phase Flow Experiments on
Board ISS (Void Fraction Characteristics in the
Observation Section just at the Downstream of
the Heating Section). International Journal of
Microgravity Science and Application. 2016;
33(1): 330104. DOI: 10.15011/ijmsa.33.330104.

Yamamoto D, Yamamoto D, Shinmoto Y,

Ohta H, et al. Development of Boiling and
Two-Phase Flow Experiments on board ISS
(Investigation on Performance of Ground Model).
International Journal of Microgravity Science
and Application. 2016; 33(1): 330105. DOI:
10.15011/ijmsa.33.330105. *

Interfacial behaviors and Heat transfer
characteristics in Boiling Two-Phase

Flow (Two-Phase Flow) — Imai R, Suzuki

K, Kawasaki H, Ohta H, Shinmoto Y, et al.
Development of Boiling and Two-Phase Flow
Experiments on Board ISS (Condensation
Section). International Journal of Microgravity
Science and Application. 2016; 33(1): 330103.
DOI: 10.15011/ijmsa.33.330103. *

Interfacial behaviors and Heat transfer
characteristics in Boiling Two-Phase

Flow (Two-Phase Flow) — Ohta H, Asano

H, Kawanami O, Suzuki K, Imai R, et al.
Development of Boiling and Two-phase

Flow Experiments on Board ISS (Research
Objectives and Concept of Experimental Setup).
International Journal of Microgravity Science
and Application. 2016; 33(1): 330102. DOI:
10.15011/ijmsa.33.330102. *

Interfacial behaviors and Heat transfer
characteristics in Boiling Two-Phase Flow
(Two-Phase Flow) — Okubo M, Kawanami
O, Nakamoto K, Asano H, Ohta H, et al.
Development of Boiling and Two-phase Flow
Experiments on Board ISS ( Temperature Data
Derivation and Image Analysis of a Transparent
Heated Short Tube in the Glass Heated Section
). International Journal of Microgravity Science
and Application. 2016; 33(1): 330107. DOI:
10.15011/jasma.33.330107. *

Interfacial behaviors and Heat transfer
characteristics in Boiling Two-Phase
Flow (Two-Phase Flow) — Hirokawa T,
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Interfacial behaviors and Heat transfer
characteristics in Boiling Two-Phase Flow
(Two-Phase Flow) — Sawada K, Kurimoto T,
Okamoto A, Matsumoto S, Takaoka H, et al.
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Development of Boiling and Two-phase Flow
Experiments on Board ISS (Dissolved Air Effects
on Subcooled Flow Boiling Characteristics).
International Journal of Microgravity Science
and Application. 2016; 33(1): 330106. DOI:
10.15011/ijmsa.33.330106. *

Interfacial phenomena and thermophysical
properties of high-temperature liquids-
Fundamental research of steel processing

ltalian-Foam (I-FOAM) — Fabrizio Q,
Loredana S, Anna SE. Shape memory epoxy
foams for space applications. Materials Letters.
2012 February; 69: 20-23. DOI: 10.1016/].
matlet.2011.11.050. *

Multiscale Boiling — Garivalis Al, Di Marco P.
Isolated bubbles growing and detaching within
an electric field in microgravity. Applied Thermal
Engineering. 2022 July 25; 212: 118538. DOI:
10.1016/j.applthermaleng.2022.118538.

using electrostatic levitation (Interfacial
Energy) — Shoji E, Takahashi R, Ito N,

Kubo M, Watanabe M. Numerical evaluation
for measurement conditions of interfacial
tension between molten slag and molten

iron by oscillating drop technique in ISS.
International Journal of Microgravity Science
and Application. 2019; 36(2): 360207. DOI:
10.15011/jasma.36.2.360207. *

International Space Station Summary

of Research Performed (ISS Summary

of Research) — Tran QD, Tran V, Toh LS,
Williams PM, Tran NN, et al. Space medicines
for space health. ACS Medicinal Chemistry
Letters. 2022 April 28; 17pp. DOI: 10.1021/
acsmedchemlett.1c00681

International Space Station Summary of
Research Performed (ISS Summary of
Research) — Weislogel MM, Graf JC, Wollman
AP, Turner CC, Cardin KJ, et al. How advances
in low-g plumbing enable space exploration.
npj Microgravity. 2022 May 20; 8(1): 1-11. DOI:
10.1038/s41526-022-00201 -V.

ISS: Collaborative Research: Spherical
Cool Diffusion Flames Burning Gaseous
Fuels (Cool Flames Investigation with
Gases) — Kim M, Waddell K, Sunderland PB,
Nayagam V, Stocker DP, et al. Spherical gas-
fueled cool diffusion flames. Proceedings of
the Combustion Institute. 2022 August 1; 10pp.
DOI: 10.1016/j.proci.2022.07.015.
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Multiscale Boiling — Oikonomidou O,
Evgenidis S, Argyropoulos C, Zabulis X,
Karamaoynas P, et al. Bubble growth analysis
during subcooled boiling experiments on-board
the international space station: Benchmark
image analysis. Advances in Colloid and
Interface Science. 2022 October 1; 308:
102751. DOI: 10.1016/j.cis.2022.102751.

Multiscale Boiling — Ronshin F, Sielaff A,
Tadrist L, Stephan P, Kabov OA. Dynamics of
bubble growth during boiling at microgravity.
Journal of Physics: Conference Series.
2021 December; 2119(1): 012170. DOI:
10.1088/1742-6596/2119/1/012170.

Multiscale Boiling — Sielaff A, Mangini D,
Kabov OA, Raza MQ, Garivalis Al, et al. The
multiscale boiling investigation on-board the
International Space Station: An overview.
Applied Thermal Engineering. 2022 January 1;
DOI: 10.1016/j.applthermaleng.2021.117932.

Observation and Analysis of Smectic
Islands in Space (OASIS) — Dolganov PV,
Shuravin NS, Dolganov VK, Kats El, Stannarius
R, et al. Transient hexagonal structures in
sheared emulsions of isotropic inclusions on
smectic bubbles in microgravity conditions.
Scientific Reports. 2021 September 27; 11(1):
19144. DOI: 10.1038/s41598-021-98166-7. *
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media in microgravity: Packed Bed Reactor
Experiment-2. American Institute of Chemical
Engineers (AIChE) Journal. 2022 April 19; DOI:
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PK-3 Plus: Plasma Crystal Research on the
ISS (PK-3 Plus) — Du C, Nosenko V, Thomas
HM, Muller A, Lipaev AM, et al. Photophoretic
force on microparticles in complex plasmas.
New Journal of Physics. 2017 July; 19(7):
073015. DOI: 10.1088/1367-2630/aa724f. *

PK-3 Plus: Plasma Crystal Research on
the ISS (PK-3 Plus) — Zhdanov SK, Schwabe
M, Rath C, Thomas HM, Morfill GE. Wave
turbulence observed in an auto-oscillating
complex (dusty) plasma. EPL (Europhysics
Letters). 2015 May 1; 110(3): 35001. DOI:
10.1209/0295-5075/110/35001.. *

Plasma Kristall-4 (PK-4) — Liu B, Goree JA,
Schutt S, Melzer A, Pustylnik MY, et al. Nonlinear
wave synchronization in a dusty plasma under
microgravity on the International Space Station
(ISS). IEEE Transactions on Plasma Science.
2021 December; 49(12): 3958-3962. DOI:
10.1109/TPS.2021.3123556.

Plasma Kristall-4 (PK-4) — Naumkin VN,
Zhukhovitskii DI, Lipaev AM, Zobnin AV, Usachev
AD, et al. Excitation of progressing dust
ionization waves on PK-4 facility. Physics of
Plasmas. 2021 October 1; 28(10): 103704. DOI:
10.1063/5.0064497 .

Plasma Kristall-4 (PK-4) — Nosenko V,
Zhdanov SK, Pustylnik MY, Thomas HM, Lipaev
AM, et al. Heat transport in a flowing complex
plasma in microgravity conditions. Physics of
Plasmas. 2021 November 1; 28(11): 113701.
DOI: 10.1063/5.0069672.
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Plasma Kristall-4 (PK-4) — Totsuji H. Behavior
of dust particles in cylindrical discharges:
Structure formation, mixture and void, effect of
gravity. Journal of Plasma Physics. 2014 July
21; 1-6. DOI: 10.1017/S0022377814000294. *

Ring Sheared Drop — McMackin PM, Adam
JA, Griffin SR, Hirsa AH. Amyloidogenesis via
interfacial shear in a containerless biochemical
reactor aboard the International Space Station.
npj Microgravity. 2022 September 20; 8(1): 1-8.
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Selectable Optical Diagnostics Instrument-
Influence of Vibrations on DIffusion of
Liquids (SODI-IVIDIL) — Ahadi A, Kianian

A, Saghir MZ. Heat and mass transport
phenomena under the influence of vibration
using a new aided image processing approach.
International Journal of Thermal Sciences.
2014 January; 75: 233-248. DOI: 10.1016/].
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Selectable Optical Diagnostics Instrument-
Influence of Vibrations on Dliffusion of
Liquids (SODI-IVIDIL) — Ahadi A, Saghir MZ.
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Simulation of Geophysical Fluid Flow Under
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Porter J, Ezquerro Navarro JM. Thermocapillary-
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Triller T, Mialdun A, Kohler W, et al. Transport
properties of the binary mixtures of the

three organic liquids toluene, methanol,

and cyclohexane. The Journal of Chemical
Physics. 2017 March 7; 146(9): 094507. DOI:
10.1063/1.4977078. *

Solid Fuel Ignition and Extinction - Material
Ignition and Suppression Test (SoFIE-MIST)
— Thomsen M, Carmignani L, Rodriguez A,
Scudiere C, Liveretou C, et al. Downward flame
spread rate over PMMA rods under external
radiant heating. Fire Technology. 2022 April 30;
22pp. DOI: 10.1007/s10694-022-01245-y.

Space Dynamically Responding Ultrasonic
Matrix System (SpaceDRUMS) — Davidson
R, Guigne J, Hart D. Space-DRUMS® a
commercial facility for the ISS. 2003 ISPS

and Spacebound Microgravity Sciences
Symposium, Toronto, Canada; 2003 May. 8pp. *

Structure and Liftoff In Combustion
Experiment (SLICE) — Dobbins RR, Tinjero
J, Squeo J, Zhao X, Hall RJ, et al. A combined
experimental and computational study of

soot formation in normal and microgravity
conditions. Combustion Science and
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Study on Soret effect (thermal diffusion
process) for the mixed solution by the in-
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Tomaru M, Suzuki S, Inatomi Y. Improvement

in phase analysis using spatio-temporal
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International Journal of Microgravity Science
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of Technical Alloys Under Diffusive and
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particle accumulation structures on board
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Science and Technology. 2022 May 17; 34: 33.
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Transparent Alloys - METCOMP — Ludwig A,
Mogeritsch JP, Rettenmayr M. On/off directional
solidification of near peritectic TRIS-NPG with

a planar but tilted solid/liquid interface under
microgravity conditions. Scripta Materialia.
2022 June 1; 214: 114683. DOI: 10.1016/].
scriptamat.2022.114683.

Transparent Alloys - METCOMP —
Mogeritsch JP, Ludwig A. In-situ observation
of coupled growth morphologies in organic
peritectics. IOP Conference Series:
Material Science and Engineering. 2012
January; 27: 012028. DOI: 10.1088/1757-
899X/27/1/012028. *

Transparent Alloys - METCOMP —
Mogeritsch JP, Ludwig A. Investigation on

the binary organic components TRIS-NPG

as suitable model substances for metal-like
solidification. The 7th International Conference
on Solidification and Gravity, Miskolc -
Lillafired, Hungary; 2018 September 3-6. 6pp. *

Transparent Alloys - METCOMP —
Mogeritsch JP, Sillekens WH, Ludwig A. In situ
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conditions. TMS 2022 751st Annual Meeting
& Exhibition Supplemental Proceedings,
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Alteino Long Term Cosmic Ray
Measurements on board the International
Space Station (ALTCRISS/ Sileye-3/
Alteino) — Larsson O, Benghin VWV, Casolino
M, Chernikch IV, Di Fino L, et al. Relative
nuclear abundance from C to Fe and integrated
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the Sileye-3/Alteino experiment. Journal of
Physics G: Nuclear and Particle Physics. 2013
December; 41(1): 015202. DOI: 10.1088/0954-
3899/41/1/015202. *

Alteino Long Term Cosmic Ray
Measurements on board the International
Space Station (ALTCRISS) — Pugliese M,
Casolino M, Cerciello V, Durante M, Grossi G, et
al. SPADA: A project to study the effectiveness
of shielding materials in space. Il Nuovo
Cimento C. 2008; 31(1): 91-97. DOI: 10.1393/
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Astrobee — Albee KE, Ekal M, Coltin B,
Ventura R, Linares R, et al. The RATTLE motion
planning algorithm for robust online parametric
model improvement with on-orbit validation.
IEEE Robotics and Automation Letters. 2022
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LRA.2022.3196957.

Astrobee — Albee KE, Oestreich CE, Specht C,
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planning, and control pipeline for autonomous
rendezvous with tumbling targets. Frontiers
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Astrobee/Assistive Free-Flyers with
Gecko-Inspired Adhesive Appendages for
Automated Logistics in Space (Gecko-
Inspired Adhesive Grasping) — Chen TG,
Cauligi A, Suresh SA, Pavone M, Cutkosky
MR. Testing gecko-inspired adhesives with
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Astrobee aboard the International Space Station:
Readying the technology for space. IEEE
Robotics and Automation Magazine. 2022 May
27; 2-11. DOI: 10.1109/MRA.2022.3175597.

Astrobee — Chen T, Zhang T, Ciocarlie M.
Design paradigms based on spring agonists
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and application. 2021 IEEE International
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International Conference on Robotics
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Atomic Densities Measured Radially in
Metal Halide Lamps Under Microgravity
Conditions with Emission and Absorption
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GM, et al. Metal halide lamps in the international
space station ISS. Journal of Physics D:
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Development of a System of Supervisory
Control Over the Internet of the Robotic
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Sensorimotor impairments during spaceflight:
Trigger mechanisms and haptic assistance.
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et al. [Investigation of the microbial obsemination
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Environmental Medicine). 2019; 53(3): 81-88.
DOI: 10.21687/0233-528X-2019-53-3-81-88. *

Exploration ECLSS: Brine Processor
System — Kelsey LK, Boyce SP, Speight G,
Pasadilla P, Tewes P, et al. Closing the water
loop for exploration: 2020-2021 status of the
Brine Processor Assembly. 50th International
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2020, Lisbon, Portugal; 2021 July 12. 11.*

Exploration ECLSS: Brine Processor
System — Boyce SP, Molina S, Pasadilla P,
Tewes P, Joyce CJ, et al. Closing the water
loop for exploration: 2021-2022 status of the
Brine Processor Assembly. 57st International
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Gecko Gripper— Parness AJ. Testing gecko-
like adhesives aboard the International Space
Station. AIAA SPACE and Astronautics Forum
and Exposition, Orlando FL; 2017 September
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Haptics-2: Real-time teleoperation
experiment conducted by crew from Space
to control robotic components on Earth
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performance during spaceflight: Individual
adaptation to microgravity and the benefits of
haptic support. Applied Ergonomics. 2022
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International Space Station Internal
Radiation Monitoring (ISS Internal Radiation
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Inozemtsev KO, Ploc O, Tolochek RV, et

al. SPACEDOS: An open-source pin diode
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International Space Station Internal
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Mission) — Bondi L, Chuang G, Ick C, Dave A,
Shelton C, et al. Acoustic imaging aboard the
International Space Station (ISS): Challenges
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Materials International Space Station
Experiment - 9 and 10 - NASA (MISSE-
9-NASA/MISSE-10-NASA) — Loredana S.
Space sustainability, advanced materials and
micro/nanotechnologies for future life in outer
space. Emergent Materials. 2022 March 4; 4
pp. DOI: 10.1007/s42247-022-00373-z.

METERON Quick Start a / DTN (METERON)

Electron microscopy and analysis of Martian
meteorite ALH84001 with MochiilSS-NL on the
International Space Station. Microscopy and
Microanalysis. 2022 August; 28(S1): 2712-
2718. DOI: 10.1017/S1431927622010224.

One-Step Gene Sampling Tool to Improve
the ISS Bioanalytical Facility (One-Step
Gene Sampling Tool) — Nestorova GG,

— Panzirsch M, Pereira A, Singh H, Weber
B, Ferreira E, et al. Exploring planet geology
through force-feedback telemanipulation from
orbit. Science Robotics. 2022 April 20; 7(65):
eabl6307. DOI: 10.1126/scirobotics.abl6307.

METERON Quick Start a / DTN (METERON)
— Wormnes K, Carey W, Krueger T, Cencetti

L, den Exter E, et al. ANALOG-1 ISS - The first
part of an analogue mission to guide ESA’s
robotic moon exploration efforts. Global Space
Exploration Conference (GLEX 2021), St.
Petersburg, Russia; 2021 June. 10pp.*

Microbial Aerosol Tethering on Innovative
Surfaces in the International Space
Station (MATISS) — Lemelle L, Rouquette
S, Mottin E, Le Tourneau D, Marcoux P, et al.
Passive limitation of surface contamination

by perFluoroDecylTrichloroSilane coatings in
the ISS during the MATISS experiments. npj
Microgravity. 2022 August 4; 8(1): 1-8. DOI:
10.1038/s841526-022-00218-3.

Middeck Active Control Experiment-Il
(MACE-II) — Ninneman RR, Denoyer KK.
Middeck Active Control Experiment Reflight
(MACE l1): lessons learned and reflight status.
Smart Structures and Materials 2000:
Industrial and Commercial Applications of
Smart Structures Technologies, Newport
Beach, CA; 2000 June 12. 131-137. DOI:
10.1117/12.388154. *

Mochii — Own C, Thomas-Keprta KT,
Clemett S, Rahman Z, Martinez J, et al.
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Crews N, Schramm AK, Aquilina RA, Parra

MP, et al. Spaceflight validation of one-step
Gene Sampling tool for genetic analysis on the
International Space Station. Acta Astronautica.
2022 September 1; 198: 225-232. DOI:
10.1016/j.actaastro.2022.05.023.

Optical Coherence Tomography Technology
Demonstration/ International Space Station
Medical Monitoring (OCT Tech Demo/ISS
Medical Monitoring) — Makarov IA, Voronkov
Yl, Bogomolov VV, Alferova IV. Spaceflight-
associated neuro-ocular syndrome: Clinical
features and classification. Human Physiology.
2021 November 1; 47(6): 612-618. DOI:
10.1134/50362119721040101.

PErsonal Radiation Shielding for
intErplanetary missiOns (PERSEO) —
Lobascio C, Giraudo M, Bocchini L, Baiocco
G, Ottolenghi A, et al. PERSEO: Personal
radiation shielding in space, a multifunctional
approach. 48th International Conference on
Environmental Systems, Albuguerque, New
Mexico; 2018 July 8. 10pp. *

Preparing Nanosatellite and Launching

it from the Russian Segment of the
International Space Station (Nanosputnik (1
etap) - Nanosatellite (1 stage)) — Ivanov DS,
Roldugin D, Tkachev S, Mashtakov Y, Shestakov
S, et al. Transient attitude motion of TNS-0#2
Nanosatellite during atmosphere re-entry.
Applied Sciences. 2021 January; 11(15): 6784.
DOI: 10.3390/app11156784. *
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Preparing Nanosatellite and Launching
it from the Russian Segment of the
International Space Station (Nanosputnik

Synchronized Position Hold, Engage,
Reorient, Experimental Satellites
(SPHERES) — Tweddle BE, Saenz-Otero A,

(1 etap) - Nanosatellite (1 stage)) —
Ovchinnikov MY, llyin AA, Kupriyanova NV,
Penkov VI, Selivanov AS. Attitude dynamics
of the first Russian nanosatellite TNS-0. Acta
Astronautica. 2007 June 1; 61(1): 277-285.
DOI: 10.1016/j.actaastro.2007.01.006. *

Preparing Nanosatellite and Launching

it from the Russian Segment of the
International Space Station (Nanosputnik
(1 etap) - Nanosatellite (1 stage)) —
Ovchinnikov MY, Ivanov DS, Pantsyrnyi OA,
Sergeev AS, Fedorov |0, et al. Technological
NanoSatellite TNS-0 #2 connected via global
communication system. Acta Astronautica.
2020 May 1; 170: 1-5. DOI: 10.1016/j.
actaastro.2020.01.027. *

Roll-Out Solar Array (ROSA) — Jones TW,
Liddle DA, Banik JA, Shortis MR. On-orbit
photogrammetry analysis of the Roll-Out Solar
Array (ROSA). AIAA SCITECH 2022 Forum,
San Diego, CA & Virtual; 2022 January. DOI:
10.2514/6.2022-1624.

Synchronized Position Hold, Engage,
Reorient, Experimental Satellites
(SPHERES) — Mohan S, Miller DW. SPHERES
reconfigurable framework and control system
design for autonomous assembly. 2009

AIAA Guidance, Navigation, and Control
Conference, Chicago, IL; 2009 August 10+13.
14pp. DOI: 10.2514/6.2009-5978. *

Synchronized Position Hold, Engage,
Reorient, Experimental Satellites
(SPHERES) — Saenz-Otero A, Miller DW.
Design and operation of micro-gravity dynamics
and controls laboratories. 2005 Space Systems
Engineering Conference, Atlanta, GA; 2005
November 10. 14pp. *
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Miller DW. Design and development of a visual
navigation testbed for spacecraft proximity
operations. AIAA SPACE 2009 Conference &
Exposition, Pasadena, CA; 2009 September
14-17. 14pp. DOI: 10.2514/6.2009-6547. *

Vehicle Cabin Atmosphere Monitor

(VCAM) — Chutjian A, Bornstein BJ, Conroy
DG, Croonquist AP, Darrach MR, et al.

Overview of the Vehicle Cabin Atmosphere
Monitor, a miniature gas chromatograph/mass
spectrometer for trace contamination monitoring
on the ISS and CEV. 37th International
Conference on Environmental Systems

(ICES), Chicago, lllinois; 2007 July. 7pp. DOI:
10.4271/2007-01-3150. *

Wireless Communication Network (Wireless
Compose-2) — Albrecht U, Drobczyk M,
Strowik C, Lubken A, Beringer J, et al. Beat to
BEAT - Non-invasive investigation of cardiac
function on the International Space Station.
Studies in Health Technology and Informatics.
2022 June 29; 295: 95-99. DOI: 10.3233/
SHTI220669.
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EARTH AND SPACE SCIENCE

Alpha Magnetic Spectrometer - 02 (AMS-02)
— Aguilar-Benitez M, Cavasonza LA, Ambrosi
G, Arruda MF, Attig N, et al. Periodicities in

the daily proton fluxes from 2011 to 2019
measured by the Alpha Magnetic Spectrometer
on the International Space Station from 1

to 100 GV. Physical Review Letters. 2021
December 31; 127(27): 271102. DOI: 10.1103/
PhysRevl ett.127.271102.

Alpha Magnetic Spectrometer - 02 (AMS-
02) — Aguilar-Benitez M, Cavasonza LA,
Ambrosi G, Arruda MF, Attig N, et al. Properties
of daily helium fluxes. Physical Review Letters.
2022 June 10; 128(23): 231102. DOI: 10.1103/
PhysRevl ett.128.231102.

Alpha Magnetic Spectrometer - 02 (AMS-
02) — Balazs C, Li T. AMS-02 fits dark matter.
Journal of High Energy Physics. 2016 May 5;
2016(5): 38. DOI: 10.1007/JHEP05(2016)033.

Alpha Magnetic Spectrometer - 02 (AMS-
02) — Blau B, Harrison SM, Hofer H, Horvath
IL, Milward SR, et al. The superconducting
magnet system of AMS-02 —A particle physics
detector to be operated on the International
Space Station. IEEE Transactions on Applied
Superconductivity. 2002 March; 12(1): 349-
352. DOI: 10.1109/TASC.2002.1018417. *

Alpha Magnetic Spectrometer - 02 (AMS-02)
— Blau B, Harrison SM, Hofer H, Milward SR,
Ross JS, et al. The superconducting magnet

of AMS-02. Nuclear Physics B - Proceedings
Supplement. 2002 December 1; 113(1): 125-
132. DOI: 10.1016/S0920-5632(02)01831-5. *

Alpha Magnetic Spectrometer - 02
(AMS-02) — Kounine A. The alpha magnetic
spectrometer on the international space station.
International Journal of Modern Physics E.
2012 August; 21(08): 1230005. DOI: 10.1142/
S0218301312300056. *
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Alpha Magnetic Spectrometer — 02 (AMS-
02) — Zheng C, Shi'Y, Cui Z. Numerical study
on Alpha Magnetic Spectrometer thermal
response under adjustment process of
International Space Station flying attitude with
the key angle variable. Nuclear Instruments
and Methods in Physics Research Section

A: Accelerators, Spectrometers, Detectors
and Associated Equipment. 2021 October 23;
165936. DOI: 10.1016/j.nima.2021.165936.

Astrobiology Exposure and Micrometeoroid
Capture Experiments (Tanpopo) — Fujiwara
D, Kawaguchi Y, Kinoshita |, Yatabe J, Narumi

[, et al. Mutation analysis of the rpoB gene in
the radiation-resistant bacterium Deinococcus
radiodurans R1 exposed to space during the
Tanpopo experiment at the International Space
Station. Astrobiology. 2021 October 22; DOI:
10.1089/ast.2020.2424.

Astrobiology Exposure and Micrometeoroid
Capture Experiments (Tanpopo) —
Kobayashi K, Mita H, Kebukawa Y, Nakagawa
K, Kaneko T, et al. Space exposure of amino
acids and their precursors during the Tanpopo
mission. Astrobiology. 2021 November 18;
21(12): DOI: 10.1089/ast.2021.0027.

Astrobiology Exposure and Micrometeoroid
Capture Experiments (Tanpopo) — Tomita-
Yokotani K, Kimura S, Ong M, Tokita M, Katoh
H, et al. Investigation of Nostoc sp. HK-01, cell
survival over three years during the Tanpopo
mission. Astrobiology. 2021 December; 21(12):
1505-1514. DOI: 10.1089/ast.2021.0152.

Atmosphere-Space Interactions Monitor
(ASIM) — Castro-Tirado AJ, Ostgaard N,
Gogus E, Sanchez-Gil C, Pascual-Granado J, et
al. Very-high-frequency oscillations in the main
peak of a magnetar giant flare. Nature. 2021
December; 600(7890): 621-624. DOI: 10.1038/
s41586-021-04101-1.
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Atmosphere-Space Interactions Monitor
(ASIM) — Liu F, Lu G, Neubert T, Lei J,
Chanrion O, et al. Optical emissions associated
with narrow bipolar events from thunderstorm
clouds penetrating into the stratosphere. Nature
Communications. 2021 November 17; 12(1):
6631. DOI: 10.1038/s41467-021-26914-4.

Biology and Mars Experiment/Influence
of Factors of the Space Environment

on the Condition of the System of
Microorganisms-Hosts Relating to the
Problem of Environmental Safety of Flight
Techniques and Planetary Quarantine/
Study of the Resistance of a Modeled
Closed Ecosystem and Chains of Its
Components in Microgravity (Expose-R2/
Expose-R/Biorisk-MSN/Akvarium
(Aquarium)) — Alekseev VR. Study of the
biological dormancy of aquatic organisms in
open space and space flight conditions. Biology
Bulletin. 2021 November 1; 48(6): 641-661.
DOI: 10.1134/S1062359021060030.

CALorimetric Electron Telescope (CALET)
— Adriani O, Akaike Y, Asano K, Asaoka Y,
Berti E, et al. CALET search for electromagnetic
counterparts of gravitational waves during the
LIGO/Virgo O3 run. The Astrophysical Journal.
2022 July; 933(1): 85. DOI: 10.3847/1538-
4357/ac6f53.

CALorimetric Electron Telescope (CALET)
— Adriani O, Akaike Y, Asano K, Asaoka Y,

Berti E, et al. Direct measurement of the nickel
spectrum in cosmic rays in the energy range
from 8.8 GeV/n to 240 GeV/n with CALET on
the International Space Station. Physical Review
Letters. 2022 April 1; 128(13): 131103. DOI:
10.1103/PhysRevl ett.128.131103.

CALorimetric Electron Telescope (CALET)
— Adriani O, Akaike Y, Asano K, Asaoka Y, Berti
E, et al. Observation of spectral structures in the
flux of cosmic-ray protons from 50 GeV to 60
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TeV with the Calorimetric Electron Telescope on
the International Space Station. Physical Review
Letters. 2022 September 1; 129(10): 101102.
DOI: 10.1103/PhysRevlett.129.101102.

CALorimetric Electron Telescope (CALET)
— Bruno A, Blum LW, de Nolfo GA, Kataoka
R, Torii S, et al. EMIC-wave driven electron
precipitation observed by CALET on the
International Space Station. Geophysical
Research Letters. 2022 March 7; DOI:
10.1029/2021GL097529.

Crew Earth Observations (CEO) —
Rybnikova N, Mirkes EM, Gorban AN. CNN-
based spectral super-resolution of panchromatic
night-time light imagery: City-size-associated
neighborhood effects. Sensors. 2021 November
18; 21(22): 7662. DOI: 10.3390/s21227662.

Crew Earth Observations (CEO) —
Rybnikova N, Sanchez de Miguel A, Rybnikov S,
Brook A. A new approach to identify on-ground
lamp types from night-time ISS images. Remote
Sensing. 2021 January; 13(21): 4413. DOI:
10.3390/rs13214413. *

Crew Earth Observations (CEO) — Sanchez
de Miguel A, Bennie J, Rosenfeld E, Dzurjak S,
Gaston KJ. Environmental risks from artificial
nighttime lighting widespread and increasing
across Europe. Science Advances. 2022
September 16; 8(37): eabl6891. DOI: 10.1126/
sciadv.abl6891.

ECOsystem Spaceborne Thermal
Radiometer Experiment on Space Station
(ECOSTRESS) — Chang Y, Xiao J, Li X,
Middel A, Zhang Y, et al. Exploring diurnal
thermal variations in urban local climate zones
with ECOSTRESS land surface temperature
data. Remote Sensing of Environment. 2021
September 15; 263: 112544. DOI: 10.1016/].
rse.2021.112544. *
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ECOsystem Spaceborne Thermal
Radiometer Experiment on Space Station
(ECOSTRESS) — Chang Y, Xiao J, Li X,

Zhou D, Wu Y. Combining GOES-R and
ECOSTRESS land surface temperature data to
investigate diurnal variations of surface urban
heat island. Science of the Total Environment.
2022 February 3; 153652. DOI: 10.1016/.
scitotenv.2022.153652.

ECOsystem Spaceborne Thermal
Radiometer Experiment on Space Station
(ECOSTRESS) — Cooley SS, Fisher JB,
Goldsmith G. Convergence in water use
efficiency within plant functional types across
contrasting climates. Nature Plants. 2022 April
14; 1-5. DOI: 10.1038/s41477-022-01131-z.

ECOsystem Spaceborne Thermal
Radiometer Experiment on Space Station
(ECOSTRESS) — Meng X, Cheng J, Yao B,
Guo Y. Validation of the ECOSTRESS land
surface temperature product using ground
measurements. IEEE Geoscience and Remote
Sensing Letters. 2022; 19: 1-5. DOI: 10.1109/
LGRS.2021.3123816.

ECOsystem Spaceborne Thermal
Radiometer Experiment on Space Station
(ECOSTRESS) — Pascolini-Campbell M,
Lee CM, Stavros EN, Fisher JB. ECOSTRESS
reveals pre-fire vegetation controls on burn

severity for Southern California wildfires of 2020.

Global Ecology and Biogeography. 2022
August 24; 14pp. DOI: 10.1111/geb.13526.

Experimental Chondrule Formation at
the International Space Station (EXCISS)
— Koch TE, Spahr D, Merges D, Winkler B,
Brenker FE. Mg2SiO4 particle aggregation
aboard the ISS. Influence of electric fields on
aggregation behavior, particle velocity, and
shape-preferred orientation. Astronomy &
Astrophysics. 2021 August 31; 653: A1. DOI:
10.1051/0004-6361/202141330. *
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Experimental Chondrule Formation at the
International Space Station (EXCISS) —
Koch TE, Spahr D, Tkalcec BJ, Christ O, Genzel
P, et al. Formation of fused aggregates under
long-term microgravity conditions aboard the
ISS with implications for early solar system
particle aggregation. Meteoritics & Planetary
Science. 2022 April 21; 20pp. DOI: 10.1111/

maps.13815.

Experimental Chondrule Formation at

the International Space Station (EXCISS)
— Spahr D, Koch TE, Merges D, Bayarjargal

L, Genzel P, et al. A chondrule formation
experiment aboard the ISS: Microtomography;,
scanning electron microscopy and Raman
spectroscopy on Mg2SiO4 dust aggregates.
Physics and Chemistry of Minerals. 2022 May
3; 49(5): 10. DOI: 10.1007/s00269-022-01185-
/.

EXPOSE-R2-BlOlogy and Mars EXperiment
(EXPOSE-R2-BIOMEX) — Baque M,
Backhaus T, Meessen J, Hanke F, Bottger U,

et al. Biosignature stability in space enables
their use for life detection on Mars. Science
Advances. 2022 September p; 8(36): eabn7412.
DOI: 10.1126/sciadv.abn7412.

EXPOSE-R2-BlIOlogy and Mars EXperiment
(EXPOSE-R2-BIOMEX) — Cassaro A, Pacelli
C, Bague M, Cavalazzi B, Gasparotto G, et al.
Investigation of fungal biomolecules after Low
Earth Orbit exposure: A testbed for the next
Moon missions. Environmental Microbiology.
2022 April 19; 13pp. DOI: 10.1111/1462-
2920.15995.

EXPOSE-R2-BlIOlogy and Mars EXperiment
(EXPOSE-R2-BIOMEX) — de Carvalho DS,
Trovatti Uetanabaro AP, Kato RB, Aburjaile FF,
et al. The Space-exposed Kombucha Microbial
Community member Komagataeibacter
oboediens showed only minor changes in its
genome after reactivation on Earth. Frontiers in
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Microbiology. 2022 March 11; 13: 17pp. DOI:
10.3389/fmicb.2022.782175.

EXPOSE-R2-BIOlogy and Mars EXperiment
(EXPOSE-R2-BIOMEX) — Lee |, Podolich O,
Brenig B, Tiwari S, De Carvalho Azevedo VA,

et al. Metagenome-assembled genomes of
Komagataeibacter from Kombucha exposed

to Mars-like conditions reveal the secrets in
tolerating extraterrestrial stresses. Journal

of Microbiology and Biotechnology. 2022
August 28; 32(8): 967-975. DOI: 10.4014/

mb.2204.040089.

EXPOSE-R2-BIOlogy and Mars EXperiment
(EXPOSE-R2-BIOMEX) — Liu Y, Jeraldo

P, Herbert W, McDonough S, Eckloff B, et

al. Non-random genetic alterations in the
cyanobacterium Nostoc sp. exposed to space
conditions. Scientific Reports. 2022 July 22;
12(1): 12580. DOI: 10.1038/s41598-022-
16789-w.

EXPOSE-R2-BIOlogy and Mars EXperiment
(EXPOSE-R2-BIOMEX) — Napoli A, Micheletti
D, Pindo M, Larger S, Cestaro A, et al.
Absence of increased genomic variants in the
cyanobacterium Chroococcidiopsis exposed to
Mars-like conditions outside the space station.
Scientific Reports. 2022 May 19; 12(1): 8437.
DOI: 10.1038/s41598-022-12631-5.

EXPOSE-R2-BIOlogy and Mars EXperiment
(EXPOSE-R2-BIOMEX) — Sabatino R, Sbaffi
T, Corno G, de Carvalho DS, Trovatti Uetanabaro
AP, et al. Metagenome analysis reveals a
response of the antibiotic resistome to Mars-like
extraterrestrial conditions. Astrobiology. 2022
June 17; DOI: 10.1089/ast.2021.0176.

Monitor of All-sky X-ray Image (MAXI)

— Athulya MP, Radhika D, Agrawal VK,
Ravishankar BT, Naik S, et al. Unravelling the
foretime of GRS 1915+105 using AstroSat
observations: Wide-band spectral and temporal
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characteristics. Monthly Notices of the Royal
Astronomical Society. 2022 February 21;
510(2): 3019-3038. DOI: 10.1093/mnras/
stab3614.

Monitor of All-sky X-ray Image/ Neutron
star Interior Composition Explorer (MAXI/
NICER) — Bhuvana GR, Radhika D, Nandi A.
Multi-mission view of extragalactic black hole
X-ray binaries LMC X-1 and LMC X-3: Evolution
of broadband spectral features. Advances in
Space Research. 2022 January 1; 69(1): 4883-
498. DOI: 10.1016/j.asr.2021.09.036.

Monitor of All-sky X-ray Image (MAXI)

— de Beurs ZL, Islam N, Gopalan G, Vrtilek
SD. A comparative study of machine-learning
methods for X-ray binary classification. The
Astrophysical Journal. 2022 July; 933(1): 116.
DOI: 10.3847/1538-4357/ac6184.

Monitor of All-sky X-ray Image (MAXI) —
Hori T, Shidatsu M, Ueda Y, Kawamuro T, Morii
M, et al. The 7-year MAXI/GSC source catalog
of the low-Galactic-latitude sky (3MAXI). The
Astrophysical Journal Supplement Series. 2018
February; 235(1): 7. DOI: 10.3847/1538-4365/
aaa89c.*

Monitor of All-sky X-ray Image (MAXI)

— Iwakiri WB, Serino M, Mihara T, Gu L,
Yamaguchi H, Shidatsu M, et al. Discovery of

a strong 6.67keV emission feature from EXO
1745-248 after the superburst in 2011 October.
Publications of the Astronomical Society of
Japan. 2021 August 28; (psab085): 13pp. DOI:
10.1093/pasj/psab085. *

Monitor of All-sky X-ray Image (MAXI) —
Kawamuro T, Ueda Y, Shidatsu M, Hori T, Morii
M, et al. The 7-year MAXI/GSC X-Ray source
catalog in the high Galactic latitude sky (SMAXI).
The Astrophysical Journal Supplement Series.
2018 October; 238(2): 32. DOI: 10.3847/1538-
4365/aad1ef. *
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Monitor of All-sky X-ray Image (MAXI) —
Maccarone TJ, Degenaar N, Tetarenko BE,
Heinke CO, Wijnands R, et al. On the recurrence
times of neutron star X-ray binary transients

and the nature of the Galactic Centre quiescent
X-ray binaries. Monthly Notices of the Royal
Astronomical Society. 2022 May 11; 512(2):
2365-2370. DOI: 10.1093/mnras/stac5086.

Monitor of All-sky X-ray Image/ Neutron
star Interior Composition Explorer (MAXI/
NICER) — Mandal M, Pal S. Study of timing
and spectral properties of the X-ray pulsar 1A
0535+262 during the giant outburst in 2020
November—December. Monthly Notices of
the Royal Astronomical Society. 2022 March
21; 511(1): 1121-1130. DOI: 10.1093/mnras/

571 2017 outburst seen by INTEGRAL/SPI
and investigating the origin of its hard tail. The
Astrophysical Journal. 2022 August 1; 935(1):
25. DOI: 10.3847/1538-4357/ac7fff.

Monitor of All-sky X-ray Image/ Neutron
star Interior Composition Explorer (MAXI/
NICER) — Shaw AW, Miller JM, Grinberg V,
Buisson DJ, Heinke CO, et al. High resolution
X-ray spectroscopy of V4641 Sgr during its
2020 outburst. Monthly Notices of the Royal
Astronomical Society. 2022 October 11; 516(1):
124-137. DOI: 10.1093/mnras/stac2213.

Monitor of All-sky X-ray Image/ Neutron
star Interior Composition Explorer (MAXI/
NICER) — Wang S, Kawai N, Shidatsu M,

stac1i1.

Monitor of All-sky X-ray Image (MAXI) —
Panizo-Espinar G, Padilla MA, Munoz-Darias

T, Koljonen KI, Cuneo VA, et al. Discovery

of optical and infrared accretion disc wind
signatures in the black hole candidate MAXI
J1348-630. Astronomy and Astrophysics.
2022 August 1; 664: A100. DOI: 10.1051/0004-
6361/202243426.

Monitor of All-sky X-ray Image (MAXI)

— Pike SN, Negoro H, Tomsick JA, Bachetti
M, Brumback M, et al. MAXI and NuSTAR
observations of the faint X-ray transient MAXI
J1848-015 in the GLIMPSE-CO1 cluster. The
Astrophysical Journal. 2022 March 10; 927(2):
190. DOI: 10.3847/1538-4357/ac5258.

Monitor of All-sky X-ray Image (MAXI) —
Rauw G, Naze Y, Motch C, Smith MA, Guarro
Flo J, et al. The X-ray emission of y Cassiopeiae
during the 2020-2021 disc eruption. Astronomy
and Astrophysics. 2022 August 1; 664: A184.
DOI: 10.1051/0004-6361/202243679.

Monitor of All-sky X-ray Image (MAXI) —
Rodi J, Jourdain E, Roques JP. MAXI J1535-
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Murata KL, Hosokawa R, et al. Multi-wavelength
studies of the X-ray binary MAXI J1727-203:
constraining system parameters. Monthly
Notices of the Royal Astronomical Society.
2022 June 2; stac1503. DOI: 10.1093/mnras/
stac1508.

Monitor of All-sky X-ray Image (MAXI) —
Wang Y, Leahy D. The evolution of the orbital
lightcurve of Hercules X-1 with 35 day phase.
The Astrophysical Journal. 2022 March 10;
927(2): 143. DOI: 10.3847/1538-4357/ac496f.

Multi-mission Consolidated Equipment
(MCE) — Higuchi K, Miyazaki Y, Ishimura K,
Furuya H, Tsunoda H, et al. Initial operation and
deployment experiment of inflatable extension
mast in SIMPLE on JEM exposure platform in
ISS. Transactions of the Japan Society for
Aeronautical and Space Sciences, Aerospace
Technology Japan. 2014; 12(jsts29): Pc_1-
Pc_7. DOIl: 10.2322/tastj.12.Pc 1.*

Multi-mission Consolidated Equipment
(MCE) — Sato M, Takahashi Y, Kikuchi M,
Suzuki M, Yamazaki A, et al. Lightning and
sprite imager (LSI) onboard JEM-GLIMS. IEEJ
Transactions on Fundamentals and Materials.
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2011 December; 131(12): 994-999. DOI:
10.1541/ieejfms.131.994. *

Neutron star Interior Composition Explorer
(NICER) — Abbott R, Abbott TD, Abraham S,
Acernese F, Ackley K, et al. Constraints from
LIGO O3 data on gravitational-wave emission
due to r-modes in the glitching pulsar PSR
J0537-6910. The Astrophysical Journal. 2021
November; 922(1): 71. DOI: 10.3847/1538-
4357/ac0d52.

Neutron star Interior Composition Explorer
(NICER) — Axelsson M, Veledina A. Accretion
geometry of the black hole binary MAXI
J1820+070 probed by frequency-resolved
spectroscopy. Monthly Notices of the Royal
Astronomical Society. 2021 August 4; DOI:
10.1093/mnras/stab2191. *

Neutron Star Interior Composition Explorer
(NICER) — Baby BE, Bhuvana GR, Radhika D,
Katoch T, Mandal S, et al. Revealing the nature
of the transient source MAXI JO637-430 through
spectro-temporal analysis. Monthly Notices

of the Royal Astronomical Society. 2021
September 23; DOI: 10.1093/mnras/stab2719. *

Neutron star Interior Composition Explorer
(NICER) — Baglio MC, Saikia P, Russell DM,
Homan J, Waterval S, et al. A misfired outburst
in the neutron star X-ray binary Centaurus X-4.
The Astrophysical Journal. 2022 May 1; 930(1):
20. DOI: 10.3847/1538-4357/ac63ad.

Neutron Star Interior Composition Explorer
(NICER) — Belloni TM, Bhattacharya D, Motta
SE, Ponti G. A timing-based estimate of the spin
of the black hole in MAXI J1820+070. Monthly
Notices of the Royal Astronomical Society.
2021 December 1; 508(2): 3104-3110. DOI:
10.1093/mnras/stab2848.

Neutron Star Interior Composition Explorer
(NICER) — Biswas B. Impact of PREX-Il and
combined Radio/NICER/XMM-Newton’s mass-—
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radius measurement of PSR J0740+6620

on the dense-matter equation of state. The
Astrophysical Journal. 2021 November; 921(1):
63. DOI: 10.3847/1538-4357/ac1c72.

Neutron star Interior Composition Explorer
(NICER) — Borghese A, Zelati FC, Israel G,
Pilia M, Burgay M, et al. The first 7 months of
the 2020 X-ray outburst of the magnetar SGR
J1935+2154. Monthly Notices of the Royal
Astronomical Society. 2022 May 12; DOI:
10.1093/mnras/stac1314.

Neutron Star Interior Composition Explorer/
Monitor of All-sky X-ray Image (NICER/
MAXI) — Bu Q, Zhang S, Santangelo A, Belloni
TM, Zhang L, Qu J, et al. Broadband variability
study of Maxi J1631-479 in its hard-intermediate
state observed with Insight-HXMT. The
Astrophysical Journal. 2021 October 1; 919(2):
92. DOI: 10.3847/1538-4357/ac11f5.

Neutron Star Interior Composition

Explorer (NICER) — Bult PM, Altamirano D,
Arzoumanian Z, Ballantyne DR, Chenevez J, et
al. On the impact of an intermediate duration
X-ray burst on the accretion environment in IGR
J17062-6143. The Astrophysical Journal. 2021
October 10; 920(1): 59. DOI: 10.3847/1538-
4357/ac18c4.

Neutron star Interior Composition
Explorer (NICER) — Bult PM, Altamirano D,
Arzoumanian Z, Chakrabarty D, Chenevez J,
et al. The discovery of the 528.6 Hz accreting
millisecond X-ray pulsar MAXI J1816-195. The
Astrophysical Journal Letters. 2022 August;
935(2): L32. DOI: 10.3847/2041-8213/ac87f9.

Neutron Star Interior Composition Explorer
(NICER) — Bult PM. The stochastic X-Ray
variability of the accreting millisecond pulsar IGR
J17062-6143. The Astrophysical Journal. 2021
November; 921(2): 124. DOI: 10.3847/1538-
4357/ac1bae.
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Neutron Star Interior Composition Explorer
(NICER) — Caleb M, Rajwade K, Desvignes

G, Stappers BW, Lyne AG, et al. Radio and
X-ray observations of giant pulses from XTE
J1810-197. Monthly Notices of the Royal
Astronomical Society. 2021 November 10;
stab3223. DOI: 10.1093/mnras/stab3223.

Neutron star Interior Composition Explorer
(NICER) — Dage K, Brumback M, Neilsen J, Hu
C, Altamirano D, et al. Monitoring Observations
of SMC X-1’s Excursions (MOOSE) I: Program
description and initial high-state spectral results.
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