Justin Gosses
Houston, Texas

Office of The Chief Scientist
hg-publicaccess@mail.nasa.gov
NASA Headquarters

300 E Street SW

Washington DC 20024-3210

Response to Request for Information Regarding NASA
2023 Proposed Public Access Plan

This document has been written in response to the request for information

regarding the May 2023 NASA Public Access Plan. While these are my personal opinions, |
should note that | previously worked as a NASA contractor supporting code.nasa.gov and
currently work for Microsoft, which owns GitHub. My comments are in response to question 5 :
“Suggestions on sharing and archiving of software. Sites like GitHub and Zenodo offer ways to distribute
and manage software. NASA is seeking suggestions on improving the archiving, sharing, and
maintenance of software for reuse.”

Plan should more explicitly define software archival versus maintenance

In several places the proposed NASA Public Access Plan would benefit from more explicitly
describing the differences between archival of a fixed version of the software versus maintaining
an active and changing public code repository over time. For example, in the line below from
page 20 discussing requirements that Software Management Plans must address, "maintained”
and “preserved’ could be mistakenly read as the same thing.

Plans for archiving and preserving of the software, as appropriate (use of

existing databases or public repositories will be strongly encouraged),

including how long the software will be preserved or maintained

Archived software is an unchanging and fixed version. As stated in the plan, an archived version
of the software is important for reproducibility. Without an archived version of the software, it is
difficult for others to evaluate the validity of a study that depends on software. As such, it is
reasonable to have code archival as a requirement. However, archived code should be
described as the minimum and not implied to be the only or best way to share software.

NASA should also encourage, although likely not require, use of free, public facing version
control systems (GitHub, GitLab, etc.) that allow others besides the original authors to easily
access software in a manner such that the software can evolve over time. As NASA likely does
not want to mention any particular product in policy, the term “free. public-facing software
version control systems” could be used instead.



mailto:hq-publicaccess@mail.nasa.gov
https://www.federalregister.gov/documents/2023/05/18/2023-10643/request-for-information-nasa-public-access-plan-for-increasing-access-to-the-results-of
https://www.nasa.gov/sites/default/files/atoms/files/nasa_ocs_public_access_plan_may_2023.pdf

Making the code available to the public in these systems enables several behaviors that
increase the value and impact of the software not possible with an archived version of the
software alone. Placing it on these types of systems enables users to discover it from other
public code that use it as a dependency or share a topic tag. More people are likely to discover
it there as “free, public-facing software version control systems” are where developers spend a
lot of their time, not NASA run systems that fewer know about such as NASA Technical Report
Server or code.nasa.gov. As these systems also allow the public to read software without
downloading it, the software can be more quickly evaluated without having to download and
open large files. This reduces friction and increases rates of reuse. Code that exists on a “free,
public-facing software version control systems” is also more likely to improve over time. Users
who are not the original authors can add an issue when a bug or security vulnerability is found
or make pull requests to add new features. Code for one study can be generalized with the
insights of the community and turned into a tool that is reusable. To summarize, software on
“free, public-facing software version control systems” is more discoverable, reusable, secure,
generalizable, and extendable. In contrast, software that only exists in archived form or as
supplemental information to a publication is much less likely to be a part of these behaviors as it
is by definition a static artifact. Suggest changing the previously mentioned text on page 20 to:

- Plans for preserving a fixed, archival version of the software that was used to produced the

results in the publication, as appropriate (use of existing databases or archival systems will

be strongly encouraged) .

- State whether the software will optionally also exist on a free, public-facing software
version control platform where the software can evolve over time as the community reports
bugs, submits new features, etc.

- For software that has a community of users beyond the context of the study being funded,

discuss plans br community health and governance.

Note that the changed words have been highlighted in yellow but the original text is above.

Please note that the term “repository” has been removed from the original text. The term “code
repository” is commonly used in modern software development to mean a single project
collection of code files. However, in the Public Access Plan it is referred to in a way that means
a data system to hold static versions of many thousands of software projects, datasets, etc. To
avoid confusion, suggest the term “repository” either be not used or be defined within the plan.
The modern software development definition of the word is used in this document. To further
clarify these points regarding archival, the following bullet point under requirements should be
modified from:

A1l proposals or project plans submitted to NASA for scientific research funding will be
required to include a Software Management Plan (SMP) that describes whether and how software

generated through the course of the proposed research will be shared and preserved (including

timeframe), or explains why software sharing and/or preservation are not possible or

scientifically appropriate. At a minimum, SMPs must describe how software sharing and
preservation will enable validation of published results, or how such results could be

validated if software are not shared or preserved.



https://ntrs.nasa.gov/
https://ntrs.nasa.gov/
https://code.nasa.gov/

Into a version that separates archived software from non-archived software:

All proposals or project plans submitted to NASA for scientific research funding will be
required to include a Software Management Plan (SMP) that describes whether and how software

generated through the course of the proposed research will be shared and preserved (including

timeframe), or explains why software sharing and/or preservation are not possible or

scientifically appropriate. At a minimum, SMPs must describe how software preservation will
enable validation of published results, or how such results could be validated if software are
not shared or preserved. SMPs may optionally describe where a version of the software that
will change and evolve post publication will be publicly accessed in addition to the fixed

software archive used in the publication.

Additionally, on page 20 under “implementation” sub-heading there is the following statement:

Require all researchers to share their scientific software developed to support a
scholarly publication at the time of publication. This includes the scientific
software that are displayed in charts and figures or needed to validate the
scientific conclusions of the publication. This requirement could be met by
including the software as supplementary information to the published article, or
through other means. The published article should indicate how the software

can be accessed.

This statement is very similar to the fifth bullet point on page 19 under the “requirements”
sub-heading. The statement puts too much emphasis on releasing code as supplementary
information files where it is least likely to be discovered, accessed, reused, bug fixes submitted,
etc. To maximize value of funded software creation, suggest changing both bullet points on to:

Require all researchers to share their scientific software developed to support a
scholarly publication at the time of publication or prior. This includes the scientific
software that are displayed in charts and figures or needed to validate the

scientific conclusions of the publication. This requirement could be met by

including the software as supplementary information to the published article, linking to
archived versions of the software on a NASA-recognized archive service (such as NTRS or

Zenodo), or through other means. The publication should indicate how the software can be

accessed. Stating “upon request” is not a valid means of public release. If the software is

available not just as an archive but also as a publicly accessible software repository that
changes over time, both humans and machines should be able to discover it from the

publication.

It is important that going from a publication to both the fixed, archived version of the software
and the live, updating, or changing version of the software repository is as frictionless for users
as possible to maximize the value of NASA's funded software creation.

Educational Needs: Evolving Software, Archival Software, and DOIs
There is a strong need to educate scientific software developers on the benefits and methods of
both archives and having a live software repository on a public-facing version control system



that can reflect changes over time. When asked how to archive both requirements several times
in the past, | have recommended using both Zenodo and GitHub. However, any options that
enable the same behaviors, software evolution other time and DOlIs tagged to fixed releases of
said software, would be sufficient. Zenodo is foremost an archive service, but it has integrations
with Github that makes it easy to package a fixed version of a software repository into a GitHub
Release and then turning that release artifact into an archived version on Zenodo with a unique
DOI. The process is relatively simple but the instructions to do so on Zenodo and GitHub are
easy to miss and at times confusing as evidenced by the numerous attempts to explain it
elsewhere. NASA has a role to play in making more scientific software developers aware of
these processes and establishing them as at least best practice if not required. There are a few
minor changes that could be made to the public access plan to clarify when creating a software
archive with a DOI has value. On page 20, it could be interpreted only software not related to a
paper needs a DOI.

Software released independently from the peer-reviewed manuscript must be assigned

a Unique Digital Object Identifier (DOI) to enable preservation, discovery, and citation of

the software.

This wording needs modification as (1) people may hesitate to cite a paper DOI if the software is
only a small part of the paper. (2) people may need to cite a different version of software than
was released at publication. The plan should instead add the additional text as shown below:

Software released independently from the peer-reviewed manuscript must be assigned

a Unique Digital Object Identifier (DOI) to enable preservation, discovery, and citation of

the software. Sof re rele t the same time as a publication can optionally have its own

versions of the

as releases.

GitHub or GitLab releases are fixed versions of software, so they meet some of the needs for
archival, but the fact that they do not automatically get a DOI limits their use as archives without
linking them to Zenodo, which gives them a DOI.

Educational Needs: Code Citation

Software is sometimes treated as less valuable than publications in academia; partly as papers
get cited whereas code is rarely cited. NASA should encourage the use of citation files in code
repositories such as CITATION.cff and push for community standards around code citation to
enable more effective programmatic tracking of code and publication usage between different
systems. As an example, Zenodo consumes CITATION.cff files found in linked GitHub
repositories. Suggest adding two bullet points to the list of requirements on page 18 and 19

- NASA employees, contractors, and grantees are encouraged to use community standard citation

files in their software projects.

- No matter where their code, data, and publications are stored NASA employees, contractors,

are encouraged to fill out system metadata to ensure maximum linkages between



https://help.zenodo.org/faq/#github
https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content
https://emilio-berti.github.io/idiv-git-introduction/21-github_zenodo/index.html
https://emilio-berti.github.io/idiv-git-introduction/21-github_zenodo/index.html
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-citation-files
http://citation.cff
https://help.zenodo.org/faq/

