

The Restore-L Servicing Mission

Presented to the NAC Technology, Innovation and Engineering Committee March 29, 2016

Benjamin B. Reed
Deputy Program Manager, Satellite Servicing Capabilities Office
NASA's Goddard Space Flight Center
benjamin.b.reed@nasa.gov

Science and Exploration

Upgrade

Assemble

Extend Life

Science

Build

Replace and Repair

Replenish Consumables

Exploration

Extend Life

Upgrade

Assemble

Replenish Consumables

Replace and Repair

Build

Servicing Capabilities

Restore-L

Technology Demonstration Mission

Objectives

Rendezvous

HQ Space Technology Mission Directorate

Center NASA's Goddard Space Flight Center

Project Satellite Servicing Capabilities Office

Associated Centers

Kennedy Space Center

Marshall Space Flight Center

Johnson Space Center

Management and Team

relative navigation system

servicing avionics robot arm and software Technologies tool drive system and tools propellant transfer system

Relative Navigation

Objective

Autonomous, robotic rendezvous with a non-cooperative satellite

The Challenge

- Autonomous, real-time relative navigation with both non-cooperative and cooperative objects
 - Non-cooperative methods allow rendezvous to legacy space objects
 - Autonomous system allows robust operation across many operational regimes
- Creating a near-turnkey system for multiple future missions

Technologies that make it possible

- Sensor suite (Visible, infrared, lidar)
- Algorithms (range, bearing, pose)
- SpaceCube processor

Impact

 Results in an off-the-shelf, integrated Government technology set and capabilities

Servicing Avionics

Objective

 Avionics to enable autonomous rendezvous and capture of non-cooperative satellites, also teleoperated servicing tasks

The Challenge

- Running complex vision processing algorithms and robot motion control algorithms in real time on flight-qualified hardware
- Developing methods to parallel process algorithms to accelerate hardware
- Developing a mission-critical system that is flight-qualified and robust to launch and space environment
- High volume video data storage and commandable distribution

Technologies that make it possible

- SpaceCube processor
- Video Data Storage Unit

- Provides enhanced data processing capability to support complex on-orbit servicing tasks
- Remote locations with communication limitations can benefit from increased processing prior to transmitting
- Applicable to missions that need many video sources with limited bandwidth

Robot Arm and Software

Objective

- Autonomous grasping of non-cooperative on-orbit satellite
- Teleoperated robotic servicing of legacy interfaces

The Challenge

- Autonomous capture of non-cooperative clients
- Teleoperated servicing of non-prepared worksites at LEO, GEO or interplanetary

Technologies that make it possible

- NASA Servicing Arm 7 degrees of freedom
- Robot Electronics Unit
- Robot Flight Software

- Support of current (SPDM) and future (LEO/GEO servicing, asteroid, etc.) robotic missions
- Accurate local simulation of remote delay can help with investigating mitigation of cis-lunar and beyond time delay
- Robot and Electronics Unit design is GEO-qualifiable and can be used on future robotic missions

Tool Drive System and Tools

Objective

Multipurpose tools and adapters to service a non-cooperative client

The Challenge

- Create compact, multi-drive tool drive system that enables low-mass, no-motor tools
- Produce suite of robotic tools capable of fault-tolerant operations on unprepared worksites – grasp, inspection, refueling (repair)

Technologies that make it possible

- Advanced Tool Drive System
- Sophisticated servicing tools and adapters

- Otherwise daunting missions become achievable
- American industry gets a jumpstart on on-orbit servicing

Propellant Transfer System

Objective

System capable of transferring propellant to a non-cooperative satellite in orbit

The Challenge

Provide propellant on orbit to spacecraft not designed for servicing

Technologies that make it possible

- Propellant Transfer Assembly
- Zero-g fluid flow meter
- Hose management system

- Enables safe and reliable refueling of spacecraft for life extension
- Flexible fleet architecture
- Ability to launch satellites with less initial fuel, allowing for more instruments
- Knowledge learned extensible to other fluid systems: xenon, helium, cryogens
- American industry gets a jumpstart on on-orbit refueling

Near-Term Milestones

- Mission Concept Review (MCR) April 7, 2016
- Key Decision Point (KDP) A May 2016
- System Requirements Review (SRR) July 2016
- KDP-B Aug 2016
- Raven launches to ISS no earlier than August 2016

Near-term Restore-L Subsystem Milestones (1 of 2)

- Relative Navigation
 - Procurement of sensors
 - Medium-range closed loop testing
 - Relative Navigation Hardware Preliminary Design Review (PDR) summer 2016
- Vision Subsystem
 - Situational and tele-op camera procurements
 - Vision Subsystem PDR summer 2016
- Servicing Avionics
 - Development/fabrication of engineering design units (EDUs) boards for SpaceCube, Payload Services Unit (PSU), and Video Data Storage Unit (VDSU)
 - Procurement of EEE long-lead parts

Near-term Restore-L Subsystem Milestones (2 of 2)

- Robot Arm and Software
 - Testing of EDU robotic arm with first-generation EDU Robotic Electronics Unit
 - Procurement of the first actuator joint
 - Development of second generation EDU Robotic Electronics Unit
 - Robotic Subsystem PDR summer 2016
- Tool Drive System and Tools
 - Testing of the next generation Tool Drive (ATDS)
 - Design and manufacturing of prototype/EDU robotic servicing tools, including a cooperative fueling interface
 - ATDS PDR summer 2016
- Propellant Transfer System
 - Integrated end-to-end refueling test with simulated fuel
 - Procurement of long-lead components

Technology Advancement on Orbit and on the Ground

Robotic Refueling Mission

Technology Demonstration on the International Space Station

Blanket Manipulation

Wire Cutting

Cap removal

Transferring Mock Propellant

Raven

Technology Demonstration on the International Space Station

Artist's Concept

Raven payload (pre-launch)

Results in an off-the-shelf, integrated Government technology set/capability applicable to executing future NASA missions

Reduces risk for Orion

Robotic Operations Center

Evaluation of refueling in 'orbit night'

Robotic Operations Center

Artist's Concept

Development in Robotic Operations Center, Goddard Space Flight Center

Disruptive technologies open fresh possibilities for the future

Nation

Industry

Servicing Capabilities

NASA

- Expanded options for extending the lives of satellites, observatories and spaceships
- Flight-proven technologies that facilitate upgrade and (self)maintenance of robotic and crewed vehicles
- Capabilities that support ambitious Science and Exploration architectures: assembly of assets larger than single payload fairings

Nation

- Global precedence in robotic satellite servicing
- 2. U.S. fleet management possibilities
- 3. New commercial industry boosting U.S. economy

Nascent Commercial Servicing Industry

Receives flight-proven technologies to jumpstart a commercial industry.

Restore-L and Asteroid Redirect Mission Synergy

Prolong Life

Upgrade

Assemble

Servicing Capabilities

Replenish Consumables

Replace and Repair

Approved for Public Release

Build

http://ssco.gsfc.nasa.gov