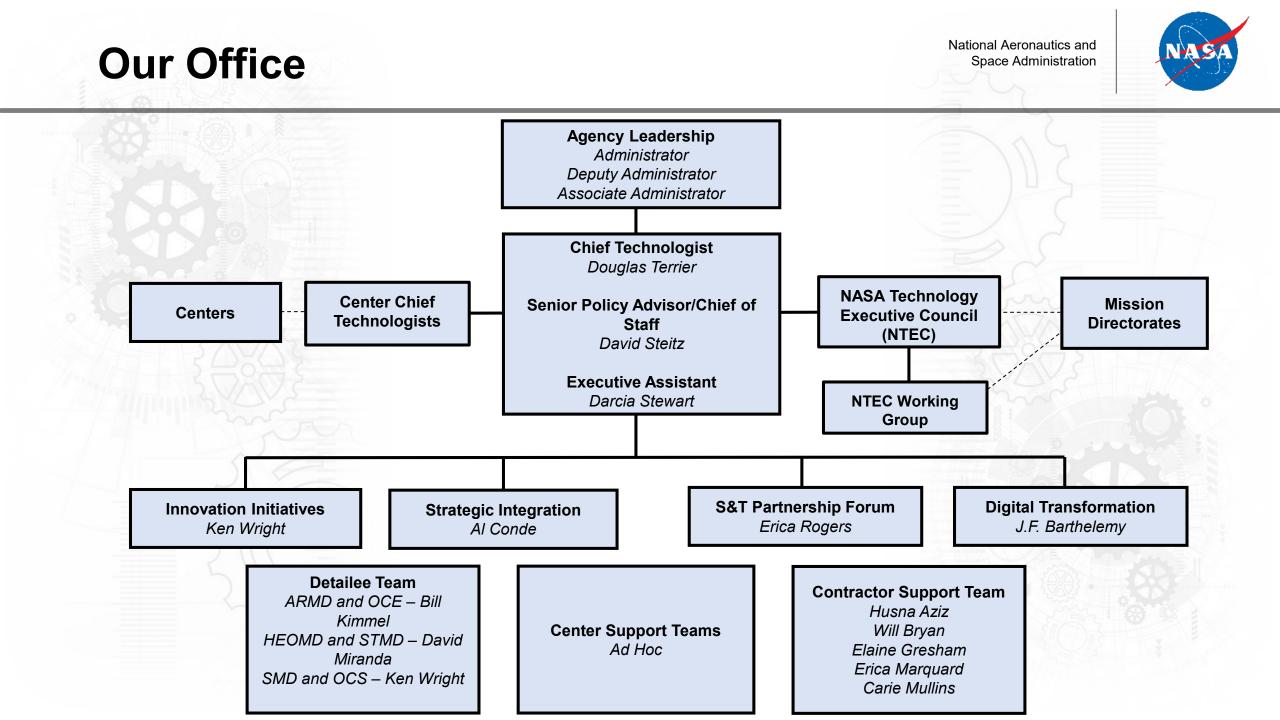

Office of the Chief Technologist

National Aeronautics and Space Administration

An Update to the NASA Advisory Council

Technology, Innovation and Engineering Committee Meeting

Al Conde - Strategic Integration Office Lead


29 OCTOBER 2019

Agenda

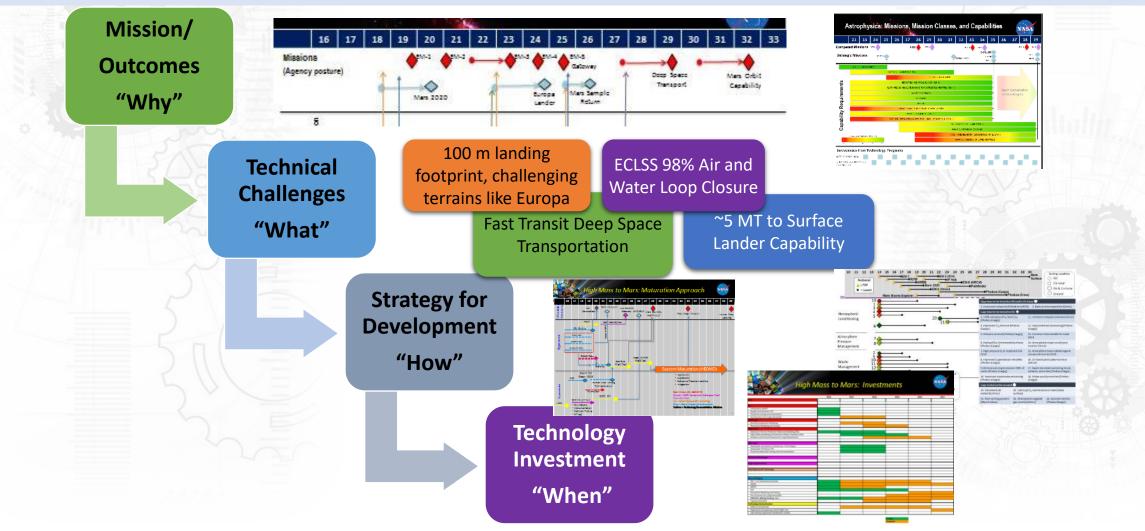
- Strategic Technology Integration Framework Overview & Status
- 2020 NASA Technology Taxonomy Overview

NASA Technology Portfolio FY2017

Science Mission Directorate ~ \$480M		Space Technology ~ \$686M
Advanced Component Technology		Contonnial Challenges
Advanced Information Systems Technology		Centennial Challenges
Astrophysics Research and Analysis		Center Innovation Fund
Europa Technology		Flight Opportunities
Heliophysics - Tech and Instrument Development for Science		
In-Space Validation of Earth Science Technologies		Game Changing Development
Instrument Incubator		NASA Innovative Advanced Concepts
Maturation of Instruments for Solar System Exploration		SBIR/STTR
Nancy Grace Roman Technology Fellowships		
Planetary Instrument Concepts for Adv of Solar Sys Objectives		Small Spacecraft Technology
Planetary Science and Tech Through Analog Research	Science Space Tech	Space Tech Research Grants
Strategic Astrophysics Technology	\$480M ~ 21% \$686M ~ 31%	Technology Demonstration Missions
+ Mission-Directed Technology		
	HumanExplorationAeronautics\$440M ~ 20%\$640M ~ 28%	
Human Exploration and Operations		Aeronautics Research Mission
Mission Directorate ~ \$440M		Directorate ~ \$640M
Advanced Exploration Systems		Advanced Air Vehicles
Space Life and Physical Sciences Research		Airspace Operations and Safety
- Human Research Program		
- Life and Physical Sciences	NAC TI&E Subcommittee Meeting October	Integrated Aviation Systems
Space Communications and Navigation	2019	Transformative Aeronautics Concepts

Recent Milestones

- March 14, 2019 NASA Technology Executive Council Convened
 - Proceed with Framework Plan
- Sept 2019
 - First round of Strategic data gathered from MDs
 - TechPort Configured to Accept Framework Data


Technology Integration Framework

National Aeronautics and Space Administration

National policy, agency-level strategic plans or other activities that drive missions.

Examples: National Space Council, agency strategic plan, decadal surveys, Exploration Mission

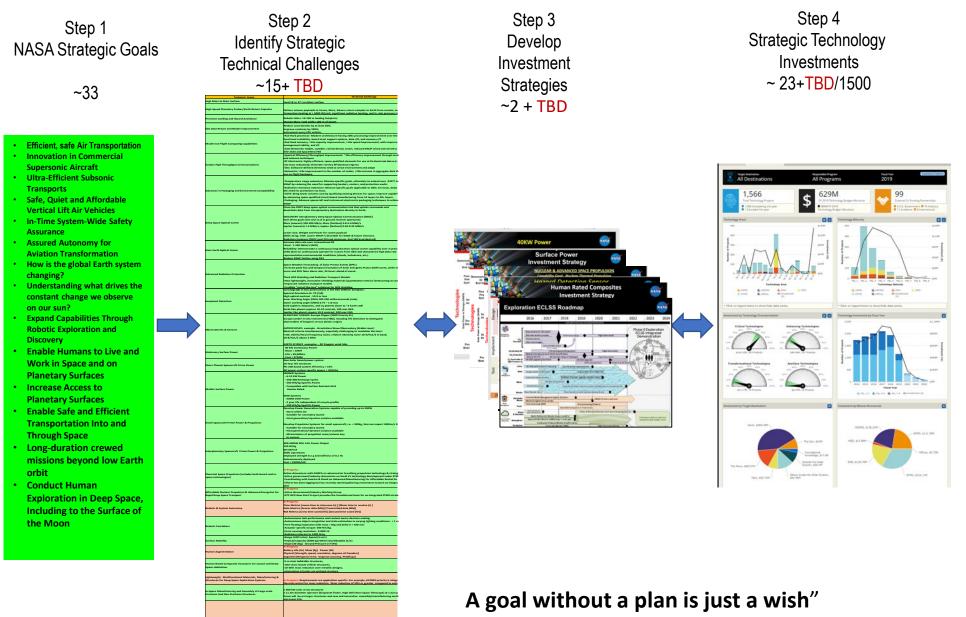
Why Needed

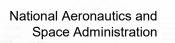
- Technology Portfolio Represents over 10% of Agency's budget
- Elevate the visibility of Agency Strategic Technology Development Portfolio
- Informed by Mission Driven Needs the "Why"
- Tighter coupling between needs and technology investment
 - Easy to communicate benefits to stakeholders
 - Supports strategic thinking and planning about technology investments
- Aligns technology investments to future missions needs
 - Promotes cross-agency collaboration to accomplish Agency goals
 - Facilitates partnerships across the Agency, OGAs and commercial

Purpose of Technology Framework

- MD to develop and maintain a Practical Strategic Technology Investment Plan
- MD Users Identify Strategic Capability Needs
 - Elevates MD awareness of their strategic needs
 - Focuses Developers on MD needs
 - Facilitates MD Prioritization at Capability Level
- Strategic vs Tactical
 - Provides structured approach before a flight program is authorized
 - Significant reduction in Flight Program Risk
- Communication
 - Facilitates collaboration & partnering
 - Encourages User and developers to communicate
 - Contributes to refining and efficiency of Strategy development
 - Centers can better apply their IRAD funds for strategic benefit
 - Shows individuals how they are part of something bigger then their project

Framework Status as of 4Q19


National Aeronautics and Space Administration

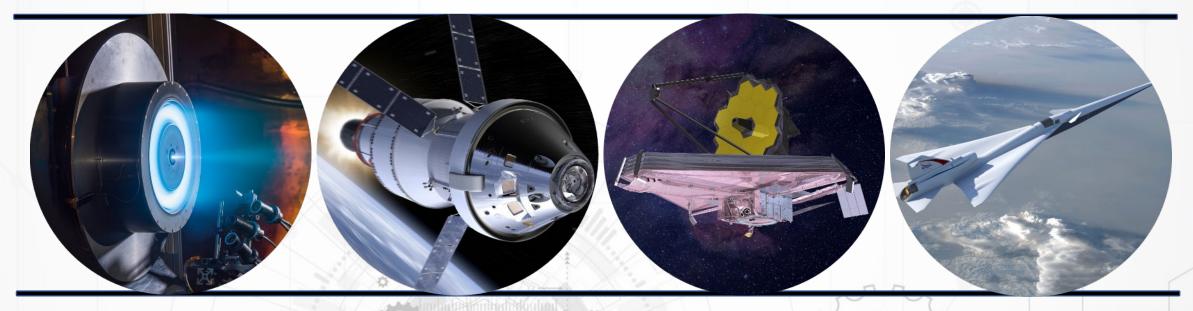

Developed high level Strategic Technology Integration Framework
Modification of TechPort

 Working with MDs to fill gaps and overcome challenges to implementation

Framework End-State with current data

Antoine de Saint-Exupéry

NASA


Going Forward

- Complete upload of 1st cycle MD Strategic Framework data into TechPort
- Standardize MD Strategic Technology reporting across Agency
- Technology focused APMC Early 2020 CY

Office of the Chief Technologist

National Aeronautics and Space Administration

The 2020 NASA Technology Taxonomy

David J. Miranda (Senior Technologist, Office of the Chief Technologist, NASA Headquarters) Al Conde (Strategic Integration Lead, Office of the Chief Technologist, NASA Headquarters) Douglas A. Terrier (Chief Technologist, Office of the Chief Technologist, NASA Headquarters)

Outline

- Introduction
- History (2010-2015)
- 2020 Development, Review, and Disposition
- 2020 Content and Changes from 2015
- 2020 Roll-Out

Introduction

- To manage and communicate NASA's extensive and diverse technology portfolio (in aeronautics, science, and space), the agency uses the **2020 NASA Technology Taxonomy**
 - The Taxonomy identifies, organizes, and communicates the technology areas that NASA advances to achieve its goals
 - It is a common technology discipline-based communication tool composed of 17 technical discipline based taxonomies that provide a breakdown for each area

National Aeronautics and Space Administration

TX01: Propulsion Systems **TX02:** Flight Computing & Avionics **TX03:** Aerospace Power and Energy Storage **TX04:** Robotic Systems **TX05:** Communications, Navigation, & **Orbital Debris Tracking & Characterization** Systems **TX06:** Human Health, Life Support, & **Habitation Systems TX07:** Exploration Destination Systems **TX08:** Sensors & Instruments **TX09:** Entry, Descent, & Landing TX10: Autonomous Systems **TX11:** Software, Modeling, Simulation, & Information Processing TX12: Manufacturing, Materials, & **Structures TX13:** Ground, Test, and Surface Systems **TX14:** Thermal Management Systems **TX15:** Flight Vehicle Systems **TX16:** Air Traffic Management & Range **Tracking Systems** TX17: Guidance, Navigation, & Control

History

- In **2010**, NASA identified 14 Space Technology Areas, as part of the draft technology roadmaps
- In 2012, after internal and external reviews, the final version was released
- In 2015, in response to changing needs, tech advancements, and recommended improvements an update was released with 15 areas to include aeronautics

History

National Aeronautics and Space Administration

- The 2010-2015 Technology Roadmaps were composed of two key features: Technology Roadmaps and the Technology Area Breakdown Structure (TABS)
- TABS was a taxonomical structure identifying the technology areas that NASA is involved in and identified in the roadmaps

2012 Space Technology Roadmaps & Technology Area Breakdown Structure

Technology Area Breakdown Structure (TABS)

Image: Space of Space

Sample Roadmap

2015 NASA Technology Roadmaps & Technology Area Breakdown Structure

Technology Area Breakdown Structure (TABS)

Sample Roadmap

2020 Development

- In mid-2017 NASA decided to take a critical look at the Technology Roadmaps and TABS
 - An Internal survey was sent across agency to understand how these tools were being used
 - 79% indicated that their organizations had created their own roadmaps
 - Respondents found TABS useful for defining and grouping technology investments

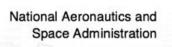
2020 Development

National Aeronautics and Space Administration

2020 NASA Technology Taxonomy

- The Office of the Chief Technologist (OCT) made two key decisions:
 - Roadmaps to be retired and replaced by a Strategic Technology Investment Framework (STIF)
 - TABS to be retained and refocused as a technical discipline driven technology taxonomy

NASA Mission Directorate



OCT tasked the NASA Center Technology Council (CTC) to revise and refocus the 2015 TABS

2020 Development

 By late 2018, with input from OCT leadership, the full CTC, Mission Directorate representatives, and subject matter experts, TABS was revised into the 2020 Taxonomy

2020 Review and Disposition

- In 2019, a review of the draft taxonomy was conducted in two phases, an internal and a public review 1,277 total comments
 - Internal NASA Review (March 5 March 22)
 - Public Review (May 21 July 5)

1,277 total comments568 comments in Internal Review709 comments in Public Review

- All comments were individually reviewed and dispositioned by NASA subject matter experts in the areas related to the taxonomy areas (Tech Fellows, Principal Technologists, System Capability Leaders, and other Agency technical experts)
 - These SMEs will serve in an enduring role as Agency resources for the technical areas described

2015 vs 2020 Comparison

2015	2020	
TA 1 Launch Propulsion Systems	TX01 Propulsion Systems	
TA 2 In-Space Propulsion Technologies		
New	TX02 Flight Computing and Avionics	
TA 3 Space Power and Energy Storage	TX03 Aerospace Power and Energy Storage	
TA 4 Robotics and Autonomous Systems	TX04 Robotic Systems	
IA 4 RODOLICS and Autonomous Systems	TX10 Autonomous Systems	
TA 5 Communications, Navigation, and Orbital Debris Tracking and Characterization Systems	TX05 Communications, Navigation, and Orbital Debris Tracking and Characterization	
TA 6 Human Health, Life Support, and Habitation Systems	TX06 Human Health, Life Support, and Habitation	
TA 7 Human Exploration Destination Systems	TX07 Exploration Destination Systems	
TA 8 Science Instruments, Observatories, and Sensor Systems	TX08 Sensors and Instruments	
TA 9 Entry, Descent, and Landing Systems	TX09 Entry, Descent, and Landing	
TA 11 Modeling, Simulation, Information Technology, and Processing	TX11 Software, Modeling, Simulation, and Information Processing	
TA 10 Nanotechnology	TX12 Manufacturing, Materials, and Structures	
TA 12 Materials, Structures, Mechanical Systems, and Manufacturing		
TA 13 Ground and Launch Systems	TX13 Ground, Test, and Surface Systems	
TA 14 Thermal Management Systems	TX14 Thermal Management Systems	
TA 15 Acronouties	TX15 Flight Vehicle Systems	
TA 15 Aeronautics	TX16 Air Traffic Management and Range Control Systems 21	
New	TX17 Guidance Navigation and Control	

Roll-Out

- Since December 2018 OCT has been working with stakeholders to develop a roll-out plan
- In early October 2019 the 2020 NASA Technology Taxonomy officially replaced the 2015 Technology Area Breakdown Structure
 - That same month OCT began a roll-out campaign to get the word out on the Taxonomy to the entire NASA ecosystem (Centers, Other Government Agencies, Industry, Academia, International Partners, Public)

Roll-Out Products

- Presentation / Webinar: Guided walkthrough that explains the history, what changed, and what's coming
 - Poster: Easy reference for all 3 levels of the Taxonomy
- OCT Taxonomy Website: Official home of the Taxonomy w/ links to digital versions of all materials.
- TechPort: Searchable Taxonomy, all projects will automatically be updated from the TABS system
- @NASA_Technology & NASA@Work Challenge: Internal & external crowdsourcing challenges that encourage hands-on use of the Taxonomy and its 17 areas
- Brochure/ Cards: High level overview of 2020 Taxonomy with link to full version online
- ...more

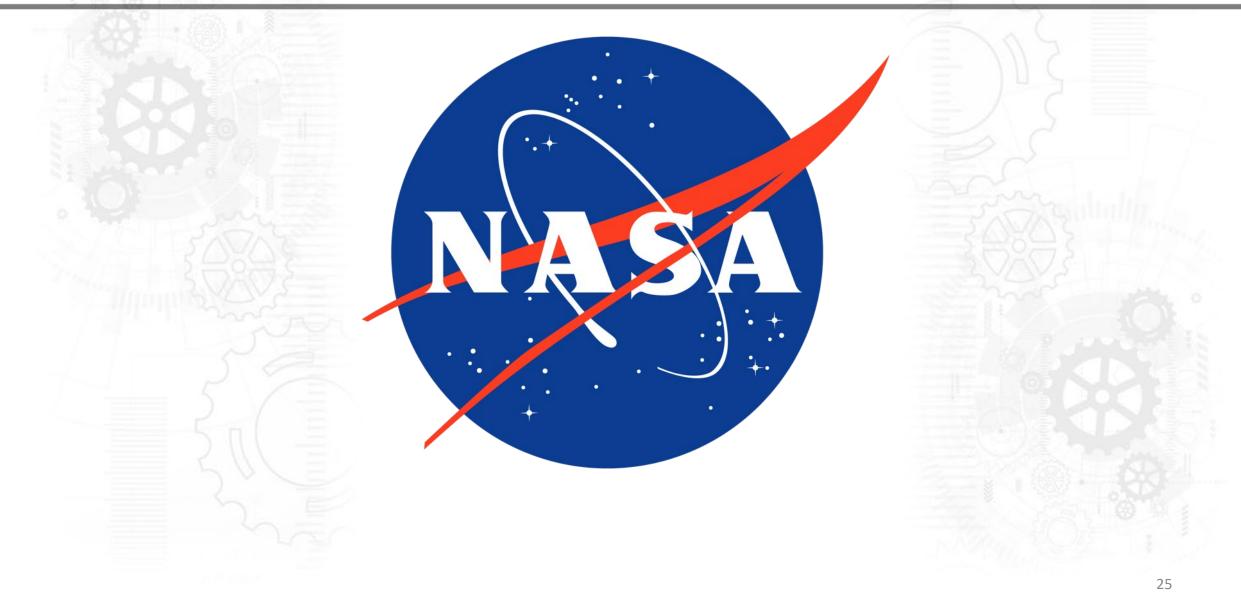
NASA 2020 Technology

Taxonomy

David J. Miranda October 1, 2019

National Aeronautics and

Space Administration



- Conclusion
 - The 2020 NASA Technology Taxonomy was created to manage and communicate the broad scope of NASA's technology development activities
 - Past iterations (2010, 2012, 2015) have served as valuable tools for identifying, organizing, and communicating the technology areas that NASA advances in order to achieve future space missions and aeronautics activities
 - The Taxonomy will continue to be key to NASA's ability to manage and communicate its technology development efforts for years to come
 - Visit <u>https://www.nasa.gov/offices/oct/home/taxonomy</u> to download a copy of the Taxonomy
 - Visit <u>https://techport.nasa.gov</u> to see the Taxonomy applied to NASA's technology investments

