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Technology Demonstration Missions
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TDM Portfolio

FY ¥ K K F¥ F F F  F Infu-

Technology Areas [35 41T 10 11 12 13 14 15 16 17 18 sion
& Human Exploration Telerobotics (HET) @)@ A
i ﬁ i Cryogenic PropellantStorage and Transfer (CPST) @)W ¥
#  Green Propellant Infusion Mission (@ m—— ) LA
# % s Solar Electric Propulsion™ (@ [— ) .
FY F¥Y F¥ F¥ F¥ F¥ F¥ F¥ FY Infu-
Technology Areas [ES TR T 10 11 12 13 14 15 16 17 18 sion
2 Low Density Supersonic Decelerators (LDSD) ) 40, X
i Laser Communications Relay Demonstration (LCRD) ,|> ’\
# Sunjammer Solar Sail Demonstration (SSD) O 2 ) »
Technology Areas (TA) TA.4. Robotics i TA.8. 5ci. Instr./Sensors @ TA.12. Materials/Structures ™ Infusion path to:
TA.1. Launch Propulsion ¥ TA.5. Comm./Navigation ¥ TA.9. EDL \'4 TA.13. Ground/Launch @ Scence .
TA.2. In-Space Propulsion ~ # TA.6. Human Health + TA.10. Nanotechology 2 TA.14. Thermal $ Exploration .
TA.3. Space Power/Storage TA.7. Human Expl. Dest. © TA.11. Modeling/Simulation = Technology Readiness Levels (TRL) (1)-9(9)

*SEP does not become a TDM until FY2014



TDM Portfolio

Ph Project FY12

SSD

Implementation

MEDLI /\lLaunch
CPST
LCRD
DSAC

Formulation

GPIM

FY1: FY14 FY15 FY16 FY17 FY18 FY19

LDSD Demo/\ Demos/)\

Launch/\ Demo ]

HET  Demos/\ /\ //\ 474N
e

Launch /\Demd
Launch/\  Demo |
Launch/\Demo |




A\ = ~G(een Propellant Infusion Mission (GPIM) %ﬁ

Overview

Overview: GPIM is a spaceflight demonstration of a complete propulsion
system for spacecraft attitude control and primary propulsion using the "Green
Propellant" AF-M315E developed by AFRL as a substitute to Hydrazine

Benefits: Utilizing AFM-315E will significantly reduce the safety restrictions
and complexities placed on hydrazine ground operations while substantially
increasing performance (50% improvement over hydrazine)

Thrusters: One 22 N and four 1 N thrusters with new high-temperature
catalyst technology designed, developed, and tested by Aerojet. Cost
comparable to hydrazine thrusters.

Spacecraft bus: Flight-proven Ball Configurable Platform (BCP) 100 bus GPIM spacecraft

Access to space: Secondary payload (ESPA compatible) on DOD Space
Test Program launch STP-2 (Falcon Heavy) in Fall 2015

Team members: Ball Aerospace (lead), Aerojet, Air Force Research
Laboratory, Space & Missile Systems Center, NASA Glenn Research Center,
NASA Kennedy Space Center

GPIM propulsion system



NASA

“Propellant Characteristics

AMF-315E was developed by AFRL in

1998 as an alternative to Hydrazine | « Less toxic (LD50) than caffeine
— Focus on reducing toxicity and * Negligible vapor toxicity allows
increasing performance propellant loading with typical PPE (no
Propellant is an ionic salt blend of SCAPE or monitoring requirement)

HAN (Hydroxylammonium Nitrate)
solid oxidizer with water and a
compatible fuel

>50% improvement in volumetric
performance versus hydrazine

AF-M315E
| JP-10 |
| Water | Gasoline Hydrazine
1 3 5 7 10

Toxicity Scale



Project Team

Ball Aerospace
Program Lead — PM & PI
Project System Engineering
Mission requirements
Flight thruster performance verification
Ground and flight data review
BCP-100
AI&T
Launch and Flight Support

NASA GRC - Co-l

* Plume modeling

* Thruster independent testing

* Experimental plume diagnostics
* Ground and flight data review

GR
R\ \3

Kennedy Space Center — Co-I

IMLI for flight experiment

Green propellant handling, loading processes

Propellant assay analysis
Ground and flight data review

gEN PROPEL

La
USION Misg;q : &

Aerojet Redmond

Operations — Co-I
Green propulsion payload
1IN and 22N thruster development
Payload integration
Ground and flight data review

Air Force SMC

* Mission Operations
* Ground Segment Support
e STPSat GSE

AFRL Edwards — Co-I

Propellant (contribution)

Propellant loading cart (contribution)
Propellant loading

Ground and flight data review




Lab Model (LM)
Thruster

Engineering Model (EM)
Thrusters

Flight Model (FM)
Thrusters




tman Exploration Telerobotics

Crew-centric
operations

Ground control
operations




Robonaut 2 (R2) Smart SPHERES Surface Telerobotics

*  Humanoid robot *  Free-flying robot *  Mobile robot on surface
(42 DOF, human-scale/ (6 axis, cold-gas (Moon, asteroid, Mars)
safe) propulsion) «  Crew centric operations

*  Ground control and *  Ground control and from inside flight vehicle
crew centric operations crew centric operations . Perform surface activities

*  Perform dexterous *  Perform remotely before/support/after crew
manipulation tasks operated mobile sensor

tasks
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Ground Analogs

.

Develop systems:» for
crew teleoperatign of

surface robots

Implement and

test multiple conops

Simulate future h:uman
mission concepts

HRS, AES

_________________________________________

Obtain baseline system
engineering data

Validate & correlate prior
ground simulations via
high-fidelity ops sims

Reduce risk (exploration
architectures based on
inaccurate assumptions)

Enable crew to operate
telerobots when site,

dynamics and distance
preclude ground control

Enable crew to operate
surface robot from orbit
when circumstances

preclude ground control

HEOMD missions
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 Demonstration of a mission infusable solar sail co-manifestested
with DSCOVR
e Sunjammer mission objectives
— Deployment
— Attitude Control
— Navigation

Dim.: 28in x 28in x 38in
Mass: 153kg (wet)




Boom Stowed
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Spreader Web with Spreader Web with
Spreader Lines Stowed Spreader Lines Deployed



Sunjammer

ETU Sail Deployment
Development
June 2013

Video - Typical Sail
Folding Technique
(ISP Sail)

. 5 7

Full Scale ETU Sail Suspended
from Manual Deployment Fixture
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"E*SL Entry, Descent and Landing Instrumentg,.;

Flight Data
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» MEDLI (Mars Science Laboratory (MSL) Entry, Descent and Landing Instrumentation) successfully
measured temperature and pressure on MSL’s heatshield during Mars entry on August 6, 2012.

MEDLI Thermal data shows heating predictions were high in some places and low in others; recession less
than 0.1”

MEDLI Pressure data shows the spacecraft flew as expected, and encountered some winds below 15 km




W Density Supersonic Decelerator fass
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e LDSD is designing and testing
EDL systems to enable a new
class of planetary entry vehicles

* Improvement over MSL
— Up to Imt increase in landed mass

— 25% increase in elevation

— 3x reduction in landing ellipse




SIAD-R (6m) SIAD-E (8m) Ballute (4.4m) Supersonic Core Structure
Decelerator Decelerator (Chute Deployment Parachute (Including Heatshield)

The components above along with the Avionics Pallet, Star 48-Motor, Spin
Motors, GLN-MAC (IMU), cameras, etc. comprise the Test Vehicle shown below\

Test Vehicle (

(SIAD, Ballute, & v
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(Not to Scale)
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Test Start: Rocket Powered Decelerator

Test Vehicle Flight: aimed NE Deployed
Separates

from Balloon
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Balloon Flight
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= Balloon Water Landing
= and Recovery Footprint

Parachute Test Vehicle Test Vehicle Landing &
Deployed Splashdown Water Recqvery Footprint

Example Southerly
Ground Track Shown

&

Drop Alt.:120,000 ft Balloon Climb-o
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Component Milestones

Completed all Fab and Proof tests
Development including Rocket Sled
tests at China Lake, and Rapid
Inflation Tests; Flight Units in Fab

Final stages of Designing and
beginning Fab

Design completed; Fab of the first
test ballute has started.

Final stages of Design and
Development Testing; Fab of first
two test parachutes (Disk Sail and
Ring Sail) has started and one if
nearing completion.

& In Fabrication
Structure

Fabrication and Check-Out
Completed; Shipped to Ft. Summer

Next Milestone Event or Phase

Flight SIAD-R will be integrated to
test Vehicle during I&T at JPL
Jan - Mar 2014

SIAD Development Verification Tests
using Rocket Sled at China Lake
Jan - Mar 2014

Structural & Inflation
Sept - Oct 2013

Conduct next round of Parachute
Verification Tests at China Lake
Sept - Dec 2013

Complete fab and Testing NLT Dec
2013 for I&T at JPL Jan - Mar 2014

Integrated with Small Balloon and TV
Simulator and tested at Ft. Summer,
NM in Aug 2013

SFDT #s*
1 - Jun 2014 (-R)
2 - Jun 2015 (-R)
3 -Jul 2015 (-R)
4 - Aug 2015 (-E)

1-3

4 (fly on last
Balloon flight)

1-4

1-4
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Build Charts




Project Summary: NASA's first, long-duration optical communications mission. The
project will help mature concepts and deliver technologies applicable to both near-
Earth and deep-space communication network missions.




Major Milestones
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R2 Gnd Cntl

B: Gnd conducts VA& Crew conducts Gnd conducts complex R2
19

IVA Mobility

EO

small scale dexterous  simulated EVA VA & simulated EVA Crew Cntl
manipulation tasks

repairs w/ teleop gear  Gnd dontrols pul Stowage

mobile Interface

manipulation tasks
R2 Baseline

Checkout

— 3
Smartphone Gnd conducts /D b Gnd Cntl
Checkout SS survey Crew conducts”Crew deploys K10 3 Telepresence
SimEVA repair  Lunar Telescope

Implementation
Green Propellant Infusion Mission
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y SRR LR Sys Test [Testmq] Eny Test
. A
‘um _cor <

"  Formulation — Phase B
MSL Entry Descent & Landing Instrumentation

MEDLI
(LaRC)

Implementation-Phase E

=

7 | Formulation |

Implementation

Significant
Test or

Cruise
Checkout|
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FY2014 Big Nine

Cryogenic Propellant

Storage & Transfer

Clock

Low Density Supersonic

NASA Space Technology Decelerators

®
rolling

projects

89

Increases space-based broadband, delivering data rates
10-to-100 times faster than today’s systems, addressing
the demands of future missions.

Better fuel handling technology will improve spacecraft fuel
economy. Required for Cryogenic Propulsion Stage (Space
Launch System - SLS - upper-stage).

This tiny atomic clock is 10-times more accurate
than today’s ground-based navigation systems,
enabling precise, in-space navigation.

This solar sail has an area 7 times larger than ever flown Develops and
in space, enabling propellant free propulsion and next demonstrates
generation space weather systems. green propellants,
thus provides an
: A alternative to highl
Demonstrates new parachutes and inflatable braking : g} y
4 s . ] corrosive and toxic
systems at supersonic velocities enabling precise i
landing of large payloads on planetary surfaces hycielne
i consequently

expanding the
capabilities of small
spacecraft systems.

Green Propellants

Human Exploration Telerobotics
& Human-Robotic Systems

Developing
advanced systems
capable of remotely
operating robots to
assist in future
exploration;
maturing new
robots capable of
assisting humans
in routine and
tedious work.

Missio

Develops large-scale Demonstrating

solar array panels large composite,
and deployment light weight fuel
mechanisms. tanks that can

Critical steponthe  reduce the mass
development path  and cost of the
to a high-power next generation
solar electric SESE

propulsion system.

~
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Composite Cryota

Solar Electric Propulsion

Human
Missions

Science
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32



Develop dextel:rous

AN

Verify 0g operations

robot suitable for

human tasks

Characterize robot

: performance
Explicitly human parameters in LEO
safe motions E

: Develop capabilities
Fixed base anc:zl to perform useful
mobile robot ! IVA work
prototypes |

E Fixed base robot

HRS,RSAA ' HET

Assiélt IVA crew

1
Rout|ne maintenance
1

1
Interior cleaning
1

Equip')ment calibration

Rem:ote science

Mobi!e robot

Improve EVA
efficiency through
worksite prep &
tear-down / stow

Expand EVA
capabilities while
reducing risks to
the crew

ISS Program



Robonaut 2




Enable SPHERES
to be used as a |
teleoperated robot

Upgrade existin

SPHERES platform

Telerobotic free-
flyer prototypes !

HRS,
DARPA

ISS Laboratory

\ /-}"‘ /

BN

Demonstrate IVA &
EVA tasks using
“Smart SPHERES”

Demonstrate ground

and crew control with
“Smart SPHERES”

,

Videg') surveys
RFI[é inventory
Dosii:*netry readings
Mobiile ground
supplort (camera,

procedure prompt,
etc.) ifor crew

________________________________________

Routine
inspections

Emergency
inspections

ISS Program




Smart SPHERES
-




Surface Telerobotics






