Jet Propulsion Laboratory California Institute of Technology

Optical Communications

Presentation to NAC Technology & Innovation Committee

2-August-2011

William H. Farr

Jet Propulsion Laboratory • *California Institute of Technology*

- Introduction
- Technology Status & Development Approach
- Summary

Why Optical Communications?

Jet Propulsion Laboratory California Institute of Technology

- 10 X to 100X increased deep space data returns over present RF communications
 - Increased science data return
 - "Virtual Presence"
 - Public engagement

Human Exploration Beyond Low-Earth Orbit

Future Advanced Instruments

10X Increased Resolution Imaging for Earth Science

10X Increased Imaging Resolution for Astrophysics

Tele-Presence with Live HiDef Video

How Optical Improves Over RF

- As a beam (RF or optical) propagates from transmitter to receiver it illuminates an area proportional to the distance-squared
 - "Range-Squared Loss" or "Inverse-Square Loss"
- Basic telecommunications tenet (RF or optical):

In a well-designed system data rate is Proportional to received power

 $\theta = \lambda / D$

- Thus, the same data rate at 10X the distance requires either:
 - 100X the area of the receiver antenna (10X the diameter); or
 - 100X more power transmitted; or
 - 10X narrower transmitted beam
- The "optical advantage": beam width = wavelength / antenna diameter
 - Example: Beam width from 30 cm optical antenna at 1550 nm is ~600X narrower than the beam width from a 300 cm RF antenna at 9.2 mm (32 GHz, Ka band)

Different Domains – Different Solutions

Jet Propulsion Laboratory California Institute of Technology

- Just like RF, "one size" does not fit all applications...
 - Different domains requires different solutions

Terrestrial

LEO / GEO Satcom

Deep Space

Space Optical Communications Status

- Near Earth
 - Successful flight demonstration missions by US DoD, ESA, and JAXA
 - ESA is going operational for LEO/GEO missions

• Cis-Lunar

- Successful beam pointing, but no real communication link
- NASA plans to demonstrate Earth-moon optical communications in 2013

Deep Space

- No deep space optical communications
- NASA is at the technology forefront for deep space orbital
- Earth-Sun L1 & L2 Points
 - Cis-Lunar technologies are sufficient for 10X to 100X improvement in data return volumes
 - Deep-space enhanced technologies would provide for similar data return volumes as cis-lunar technologies with ~1/2 the mass and power burden to the spacecraft

Domain	NASA /JPL	Lincoln Lab	NASA/ GSFC	Europe	Japan
Deep Space	1992 ¹		20055		
Cis-Lunar		(2013 ⁹)	2009 ⁸		
GEO	1995 ²	1999 ⁴		1999 ⁶	1995 ²
LEO-GEO				2005 ⁶	2005 ⁶
LEO-LEO				20087	
LEO	2009 ³			2006 ³ 2010 ⁷	2006 ³

- 1. Laser pointing to Galileo spacecraft
- 2. LCE on ETS VI spacecraft
- 3. OICETS spacecraft
- 4. GeoLITE
- 5. Laser pointing from Messenger spacecraft
- 6. SILEX
- 7. NFIRE TerraSAR-X
- 8. Calibration of LOLA and LRO
- 9. (planned LLCD)

> No deep space optical <u>communications</u> has yet been demonstrated

• Lasercom from Earth-orbit is well-proven and is transitioning to operations

Space Propagation Range-Squared Loss Jet Propulsion Laboratory California Institute of Technology

¹LLCD: MIT-LL Lunar LaserCom Space Terminal, July 2010 CDR ²DOT FLT: JPL Deep-space Optical Terminals Flight Laser Transceiver, August 2010 Concept Review

 International Telecommunication Union definition of deep space for RF spectrum allocation purposes is 2 million km

to Sun

~1.5x10⁸ km

- The moon is about 0.4 million km away
- The Earth-Sun L1 and L2 points are about 1.5 million km away
- However, interplanetary distances are <u>much larger</u> that that
 - Mars at typical closest range is about 60 million km
 - 22,500X larger signal loss due to range-squared
 - Venus at typical closest range is about 40 million km
 - 10,000X larger signal loss due to range-squared

Deep Space Optical Scenario

Sun Can be in field of view Primary source of optical noise	Atted platform ink detector M transmit laser dian pointing Space Transceiver (ST) Large distance Large 1/R ² range loss Large 2R/c round-trip light time (RTLT)
 Downlink Stabilized by disturbance isolation system & uplink beacon tracking Gb/s return link data 	Deep space optical communications improves over RF performance by:
 Ranging REQUIRES Multi-kW power uplink lasers > 10 m optical receiver apertures Efficient downlink detectors 	 Pointing: Narrow beams from small transmit apertures deliver more power "on target" Requires pointing ~500 times more precise than Ka band RF on the Mars Reconnaissance Orbiter Modulation: Pulse Position Modulation (PPM) for more "bits-per-photon" than RF Requires high peak-to-average power lasers with high DC-to-optical power efficiency
 Description Earth at T₁ Uplink Blind points to spacecraft Aids downlink pointing Reference for removal of S/C jitter Reference for point-ahead angle Mb/s forward link data Ranging 	 Detection: Efficient and high rate photon counting both in space an on ground "makes every photon count" The optical channel is not thermal noise limited Requires counting single photons even when pointing multi-meter telescopes near the sun

Jet Propulsion Laboratory California Institute of Technology

Introduction

- Technology Status & Development Approach
- Summary

Deep Space Challenges

- There is a significant performance gap between optical communications solutions developed for commercial and DoD customers and the innovative solutions required by NASA for operations across the solar system, especially at interplanetary ranges
 - Large 1/R² losses require NASA unique innovative solutions for ultra-efficient detectors, lasers, and beam pointing
 - Launch vehicle delta-V limits require NASA unique innovative solutions for very low mass and power spacecraft assemblies for deep space optical transceivers

Challenges of deep space optical over demonstrated near-Earth solutions:

- Pointing: Must point downlink using a ~10,000X dimmer uplink beacon and 100X greater roundtrip light time (RTLT)
 - Requires improved spacecraft disturbance isolation, ultra-sensitive ST detector arrays and point-ahead confirmation without handshaking
- **Modulation:** Need high order Pulse Position Modulation (PPM 16..128) and multi-Watt lasers to help overcome huge signal loss
 - ~10,000,000X greater loss at Mars far range than moon requires new solutions for kW peak power laser with 5 to > 20 W average powers
 - Laser amplifier is largest power consumer on ST
- Detection: Must shift burden from ST by using
 - > 10 m diameter telescope on Earth
 - Requires large (~1 mm²) photon counting detector arrays behind telescope due to atmospheric blurring (> 50% detection efficiency desired)

Technology Development Approach

- Objective: Develop a deep space optical transceiver that will deliver greater than 10X data rate of state of the art RF system (Ka-band) for similar spacecraft burden
 - No deep space optical system has yet been built!
 - Near-Earth optical transceiver designs <u>will not perform</u> at interplanetary ranges due to large range-squared losses
- Approach:
 - Develop key technologies for a < 35 kg / < 80W deep space
 optical transceiver with >250 Mb/s downlink rates at 0.4 AU
 - Compare to MRO Ka-band: 37 kg, 100W, 25 Mb/s @ 0.4 AU
 - Integrate and validate technology performance using endto-end emulated deep space optical links

space

ground

- Development of four key technologies will enable a deep space optical transceiver with performance greater than 10X data rate of a stateof-the-art Ka band telecom system with similar mass and power burden on spacecraft and similar cost
 - Although a deep space optical transceiver *could* be built with existing technologies, the mass & power performance is not competitive with existing deep space RF telecommunications systems
 - Key technologies have been identified as offering highest "return on investment"

Assembly or Sub-Assembly	Savings with Technology Development	Comment		
Space Telescope	minimal	Unless apertures > 50 cm required (multi-Gb/s at Mars far range)		
Space Electronics	minimal	Some mass and power savings with ASIC development (\$\$\$)		
1550 nm PPM space laser transmitter	Reduce transmitter mass 1/3, power by 1/2	Similar mass/power gains presently acheivable if downlink wavelength shifted to 1070 nm		
Spacecraft Disturbance Isolation	~20% of space transceiver mass	Existing disturbance isolation systems not optimized for low mass (<~20 kg) payloads		
Space Receiver Detector Array	10X reduction in uplink irradiance	Also enables >10 Mb/s Earth to deep space optical links		
Pointing Mechanisms	minimal	Multiple commercial solutions exist		
Ground Telescope	~\$50M per deep space optical site	Existing assets sufficient for deep space tech demo mission; > \$50M to develop first dedicated deep space optical site		
Ground Electronics	minimal	Existing solutions operate within 2 dB of theoretical performance		
Ground Receiver Detector Array	Reduce space transmitter mass and power by 1/2	Doubles deep space to Earth date rate with no change to space transmitter laser power		
Ground laser transmitter	minimal	But ground laser NRE investment needed for > 1 kb/s Earth to deep space optical rates		

Key Technologies Objectives versus State of the Art (SotA)

Jet Propulsion Laboratory California Institute of Technology

Isolator bipod with 20 dB isolation at 5 Hz (TRL 6)

InGaAs array, 10 pW/m² for 0.02 pixel centroiding error (TRL 6)

PPM laser transmitter with 10% efficiency (TRL-6)

Intensified photodiode for 5 to 12 m apetures (30% efficient, TRL 6)

• <u>Spacecraft disturbance isolation</u> system with sub-Hertz break frequency

 Development will provide 10,000X greater disturbance rejection than SotA for a 1000X reduction in uplink beacon power with a 20% mass reduction of the optical space transceiver

<u>Space receiver</u> using a photon counting detector array

 10X higher sensitivity over SotA for a 10X reduction in uplink beacon laser power and enables a > 1000X increase in uplink data rate

<u>1550 nm PPM space laser</u> transmitter with > 20% DC-optical efficiency

 2X efficiency improvement over SotA will reduce assembly mass by > 30% and enables doubling of downlink data rate with no increase in required spacecraft power

Ground receiver detector array and read-out with greater than 60% efficiency for 5 to 12 meter diameter ground telescopes

 2X efficiency improvement over SotA enables doubling of downlink data rate with no increase in required spacecraft mass or power

JPL hybrid active/passive strut with 50 dB isolation at 5 Hz (TRL 4)

Photon counting array, 1 pW/m² for 0.02 pixel centroiding error (TRL 3)

Part of JPL prototype laser transmitter for >20% efficiency (TRL 3)

JPL superconducting nanowire pixel (> 60% efficient, arrays are TRL 3)

Spacecraft Disturbance Isolation

- INNOVATION: Disturnbance isolation optimized for operation in microgravity space environment with a 10X lower passive resonant frequency than SotA for 10,000X better rejection of low frequency vibrations
 - JPL developed design concept enabled by infusion from Caltech and Columbia University of technology developed for the Laser Interferometer Gravitational Wave Observatory (LIGO)
 - Isolation problem is difficult for low mass payloads
- CURRENT STATUS:
 - Prototype Low-Frequency Vibration Isolation Platform (TRL 3-4)
- IMPACT: Downlink beam pointing using a "dim" beacon and without "hand-shaking" point-ahead verification

Caltech/JPL developed sub-Hertz disturbance rejection platform can isolate a lasercom payload with greater than 10,000X better isolation than existing low mass / power commercial isolation systems

LFTF – Low Frequency Test Facility LFVIP – Low Frequency Vibration Isolation Platform SpaDE – Spacecraft Disturbance Emulator

Jet Propulsion Laboratory

California Institute of Technology

- INNOVATION: A focal plane array of single photon detectors (SPD) can acquire and track an uplink beacon 10X to 100X better than existing analog focal plane arrays
 - A focal plane array of single photon detectors (SPD)
 can achieve optimum (shot noise limited) performance
 - An analog focal plane array performs 10 to 100 times poorer than the shot noise limit due to readout noise

• CURRENT STATUS:

 6x6 photon counting array demonstrating uplink demodulation plus beacon acquisition and tracking

• IMPACT:

- Increases uplink sensitivity 10X
- Simplifies space receiver architecture
- increases uplink rate from < 100 b/s
 (Si CCD or InGaAs array) to multi-Mb/s
- Enables cm to mm level ranging

Photon counting array tracks beacon laser, Earth image, and transmit point-ahead with only one optical channel

Versus two or three for previous deep-space optical transceiver designs

1550 nm PPM Space Laser

- INNOVATION: Increase the DC-to-optical efficiency of a 1550 nm PPM laser transmitter by "in-band" pumping of the Erbium fiber laser
 - Present high power 1550 nm laser amplifier based upon a 976 nm pumped Er-Yb fiber is limited by 63% quantum efficiency
 - 1470/1530 nm pumped 1550 nm laser amplifier has 93% quantum efficiency
- CURRENT STATUS: 1 Watt optical output PPM laser transmitter breadboard
 - 1530 nm pumped with the potential for > 20% efficiency
- IMPACT: *Double* the power efficiency with 2/3 mass of present 1550 nm pulse-position modulation (PPM) laser amplifiers

Prototype 1550 nm Laser Transmitter

In-band pumped PPM Erbium fiber laser modeling 1530 nm is preferred pump wavelength

976 nm PPM Laser Amplifier 1550 nm, 2W, TRL-5

Space Grade PPM Encoder Enables 267 Mb/s from Mars

Ground Receiver Detector Array

Jet Propulsion Laboratory California Institute of Technology

- INNOVATION: A ground receiver using superconducting nanowire single photon detectors can achieve > 50% photon counting efficiency
 - compared to 30% for best commercial photon counting detector, the Intensified PhotoDiode (IPD) from Intevac Corp. (at 1550 nm)

• Large arrays of SNSPDs presently have low yield

 Arrays of hundreds of pixels are required to detect light behind multi-meter optical receivers

• CURRENT STATUS:

- 8 pixel arrays in NbN material system with ~50% efficiency, but < 50% yield
- 48 pixel arrays in NbTiN material system with 15-20% efficiency, but < 50% yield
- Single pixels in new WSi_x material system with > 70% efficiency
 - Very promising because superconducting critical current characteristics indicate potential for high yield

• IMPACT:

- Double the downlink data rate without any increase of optical transceiver mass and power on spacecraft
- Save over \$38M per optical ground station as compared to using present 4 pixel SNSPD arrays

	Requirement					
Parameter	Near-Earth	TRL 5-6 SOTA	Deep Space	Goal	Notes	
Space Receiver sensitivity	~ -13 dBm 40 Gb/s	~ -17 dBm 40 Gb/s	~ -90 dBm 1 Mb/s	~ -90 dBm 1 Mb/s	Reduces deep space uplink laser power from MW to kW	
Space Receiver array size	2x2	2x2	32x32 to 128x128	32x32	Near-Earth does not require single photon sensitive detectors	
Space Laser transmitter bandwidth	> 10 GHz	10 GHz	5 GHz	-	Deep space requirement is met by SOTA performance	
Space Laser DC-Optical Power Efficiency	< 10% is acceptable	~34% 1064 nm	> 20%	20% for 1550 nm	Driver is to reduce power and mass burden on spacecraft	
		~13% 1550 nm				
Spacecraft Disturbance Isolation below ~3 Hz	-	-	> 20 dB	> 27 dB	Must achieve this isolation with low mass/power assembly when using a dim uplink laser beacon	
Spacecraft Disturbance Isolation break frequency	~ 5 Hz	~ 2 Hz	< 0.5Hz	< 0.3 Hz	Driver is dim beacon; low payload mass makes isolation difficult	
Ground Receiver photon counting detector efficiency	~ 30%	30%	50%	60%	Must maintain this sensitivity at Gb/ s data rates when coupled to large ground apertures	
Ground Receiver array size (units of spatial modes)	1 to few	84	> 4000	> 1600	To match large apertures that collect maximum receive power	

Achieving requirements with minimal spacecraft burden is an overriding concern

• Due to mass, power, and delta-V drivers that are critical for deep space missions

- Introduction
- Technology Status & Development Approach
- Summary

- High-rate, long-delay communications architecture
- Demonstration of NASA-unique subsystems (e.g. large point-ahead, large ground collectors)
- Optical space terminal(s) designs and operations
- Optical ground terminal(s) designs and operations

Proposed GCD Deep Space Optical Communications Technology Development

2011 2012 2013 2014 FY2012 FY2013 FY2014 02 Q4 Q2 Q3 02 Q3 Q1 Q3 Q1 Q4 Q1 Q4 OND А OND А OND JFM A M FΜ S FΜ A M JA S 1 S А Μ - 1 Spacecraft 8-DOF control platform 10-DOF control platform Integrate BsB PAM Disturbance **Isolation Platform Development** Isolation Space Detector. Down-selec Integrated 32x32 detector & ROIC InGaAs Flight Detector Development Space 32x32 development & test Extended array testing Receiver HgCdTe Flight Detector Development Beacon & Point-Complete BsB Ahead tracking Receiver Space Receiver Development 20% efficient 1550 nm laser 1530 nm pumped PPM down-select & go/no-go decision 1550 nm PPM fiber amplifier **Deliver PPM laser** Space Laser 1530 pumped Er Fiber Amplifier Development transmitter (TRL 5) Transmitter PPM Laser Develop. Crystal Waveguide Amp. Develop End-to-end testbed with 2-axis coarse Deep-Space bi-directional signaling pointing testbed Optical Modeling & Testbed Development Transciever I&T Transceiver Deliver deep space optical transceiver Ground Detector Integrated nanowire (TRL 5) Downselect array / 48 pixel ROIC Ground Receiver Ground Detector Array Development Detector Array Deliver kilomode **ROIC ICD** ground detector assy. Prototype ow-jitter (TRL 5) complete V InGaAs arrays InGas Ground Detector Development KDP-F KDP-E KDP-D

Other Benefits of Technology to NASA

Optical Light Science

- Tests of physics beyond the standard model
- Tests of time variation of fundamental physics constants
- Precision ranging (cm and mm scale) for planetary studies and astrophysics
 - Determination of planetary interiors
 - Tests of Parametric Post-Newtonian gravitational theories
 - Tests of strong and weak equivalence principles
- Improved vibration isolation for high resolution cameras
 - Longer integration times without blurring
- Ultimate sensitivity cameras for near-infrared imaging
 - Smaller apertures for high sensitivity planetary imaging

• Disturbance Isolation

- Improved vibration isolation for laboratory instruments
- Vibration isolation for nanofabrication

Single Photon Detector Arrays (semiconductor)

- Reduced dose for CAT and PET scans
- Optical tomography
- Advanced biosensors for multiplexed detection of biomolecules and detection of radiological, biological, and chemical agents

Single Photon Detector Arrays (Superconducting)

- Improved defect analysis in semiconductor fabrication processes
- Extended range quantum key distribution
- Quantum computing

- Space optical communications has the potential to deliver 10-100X higher data rates from for the same mass and power as present RF systems
 - Challenges unique to optical communications have been demonstrated at GEO and LEO, but still need validated solutions for NASA missions
- Deep space is a significantly more difficult domain than Near-Earth for implementation of optical communications
 - NASA unique solutions are required to close the "performance gap"
- Advancement of a few key technologies will enable a Space Optical Transceiver with Size, Weight and Power (SWaP) attractive to missions
 - 10X data rate performance of Ka band RF for similar Size, Weight, and Power
 - Innovations in disturbance isolation, photon counting detector arrays for ground and space, and efficient lasers enable this performance improvement