Lesson 2: Finding the Center of Gravity Using Plumb Lines Grades 3–4

Objectives

- To discover the center of gravity (c.g.) of a cardstock shape (two-dimensional model) of an F-15 ACTIVE using plumb line.
- To demonstrate balance (state of equilibrium) by suspending a cardstock shape of an F-15 ACTIVE from a string at the center of gravity.

Science Standards

Scientific Enterprise
Science and Technology
Science as Inquiry
Physical Science
Position and Motion of Objects
Change, Constancy, and Measurement
Evidence, Models, and Explanation

Science Process Skills

Observing
Communicating
Measuring
Investigating
Predicting
Controlling Variables

Mathematical Standards

Problem Solving Communicating Reasoning Measuring Functions and Patterns

Preparation

Use the pattern of the F-15 ACTIVE to trace and cut out cardboard shapes. Older students can do the cutting.

Part 1

- 1. Introduce the F-15 ACTIVE
- Ask students what they know about the F-15 ACTIVE. (A highly maneuverable fighter capable of achieving over Mach 2 and altitudes of 60,000 feet.) Bring out one of the cardstock F-15 ACTIVEs. Explain this as an F-15 ACTIVE, a special one-ofa-kind airplane flown by NASA test pilots for research purposes.
- Balance it flat on your finger. Ask the students if they think they could do the same if they had an F-15 ACTIVE. Challenge students.
- Distribute cardboard F-15 ACTIVEs or distribute materials so students can cut out the F-15 ACTIVEs.
- Allow time for exploration as students will want to fly their airplanes.
- Tell students that NASA engineers need to know the exact place to balance the F-15 ACTIVE just as the students did when they balanced the models on their fingers.
- Tell them NASA engineers use mathematics to find the center of gravity, and they can, too.
- Students will do each step in small groups, or teacher may demonstrate.

Procedure

1. Attach the paper clip weight to one end of a string.

- 2. Attach the string and paper clip weight to a wall with a pushpin. This is the plumb line.
- 3. Punch one hole anywhere on the F-15 ACTIVE.
- 4. Put the other pushpin through the hole, and let the F-15 ACTIVE dangle from the pin until it settles in a stable position.
- 5. Put the pushpin (and hanging F-15 ACTIVE) right on the plumb line.
- 6. Use a ruler to draw a line on the F-15 ACTIVE, following path of the plumb line
- 7. Repeat steps 3, 4, 5, and 6 once or twice. Take turns.
- 8. Where the lines intersect is the center of gravity.

Part 2

Have the students color their F-15 ACTIVEs and punch a small hole in each F-15 ACTIVE at the marked center of gravity with a needle and thread. Tie a large knot at the bottom. Hang from the ceiling using paperclips or hooks. Hang the F-15 ACTIVEs low enough so that students can use them to complete lesson 3.

Assessment

- 1. Conduct a class discussion where students demonstrate their understanding of:
 - Balance
 - Stability
 - Center of Gravity
- 2. Ask students to predict what they think might happen if the teacher pushes the F-15 ACTIVE in:
 - A forward direction
 - A sideways direction
- 3. Push the F-15 ACTIVE and allow it to swing back to a resting position. Discuss the action in terms of balance and stability. Compare the push to a pilot flying (controlling) the airplane and the airplane being designed to return to a stable position. The F-15 ACTIVE uses computers to integrate the control surfaces and the vectored thrust so that the plane is stable.

Extensions

Use other shapes to find center of gravity. For example: initials, outlines of states, birds.

