Nicholas Cothard
Cornell University
The future of experimental cosmology and astrophysics is intimately tied to the progress of remote sensing technology of millimeter and far-IR instruments. I will contribute to this progress by designing new optics and receiver technologies to increase throughput, speed, and sensitivity. Specifically, I will 1) develop high-throughput optics by using micro-machining technologies to fabricate highly efficient anti-reflection coatings at far-IR and mm wavelengths and 2) design and test new transition edge sensor bolometer readout architectures based on microwave superconducting quantum interference device multiplexing. My contributions to these technologies will further the development of diffraction limited performance across large-format, low noise, high density focal plane detector arrays resulting in new technologies applicable to a broad range of NASA missions and experimental cosmology instruments. With the technologies that I propose to develop, we will have the potential to probe a wide range of astrophysics such as the physics of inflation at a fraction of a second after the big bang, the evolution of protoplanetary disks, and star formation in nearby galaxies.