AI Astrobiology Exploration Science
NEW LITERATURE ADDED REGULARLY
2024:
Leveraging Machine Learning Approaches to Predict Organic Carbon Abundance in Mars-Analog Hypersaline Lake Sediments. 2024, Nichols, N. et al. JGR Machine Learning and Computation.
https://doi.org/10.1029/2024JH000138
Keywords: Machine Learning, Mars, In-situ, X-ray fluorescence
2023:
Towards a Biosignatures Image Detection System for Planetary Exploration with UAVs. 2023, Galvez-Serna, J. et al. IEEE Aerospace Conference.
https://ieeexplore.ieee.org/document/10115661
Keywords: Biosignatures, CNN, Imaging
Orbit-to-ground framework to decode and predict biosignature patterns in terrestrial analogues. 2023, Warren-Rhodes, K. Nat Astron.
https://doi.org/10.1038/s41550-022-01882-x
Keywords: Biosignatures, CNN, Deep Learning, Mapping
2022:
Planetary Mapping Using Deep Learning: A Method to Evaluate Feature Identification Confidence Applied to Habitats in Mars-Analog Terrain. 2022, Phillips M. S. et al., Astrobiology Journal.
http://doi.org/10.1089/ast.2022.0014
Keywords: Biosignatures, CNN, Deep Learning, Mapping
Science Autonomy and Space Science: Application to the ExoMars Mission. 2022, da Poian, V. et al. Front. Astron. Space Sci.
https://doi.org/10.3389/fspas.2022.848669
Keywords: Training data, Logistic Regression, Random Forest
Autonomy for Ocean Worlds Astrobiology: A Perspective. 2022, Theiling B. P. et al. Astrobiology Journal.
http://doi.org/10.1089/ast.2021.0062
Keywords: Review, Neural Net, Feature Detection, Training